NetNado
  Найти на сайте:

Учащимся

Учителям



Инструкция по монтажу вспомогательных цепей и 06-08 Дата введения 01. 04. 2008 г. Разработана: ОАО "Южуралэлектромонтаж"


5. Монтаж каналов для прокладки проводов
5.1. При большом количестве проводов в потоке, а также на бескаркасных электроконструкциях провода второстепенных цепей рекомендуется прокладывать в каналах прямоугольного сечения (см. рис. 5.1. и табл. 5.1).

Рис. 5.1. Вид канала прямоугольного сечения
Размеры каналов (высоташирина), мм:

24×24, 36×24, 36×37, 36×49, 49×24, 49×37, 49×49, 49×74, 49×99, 49×124, 73×36, 73×49, 73×74, 73×99, 73×124.

5.2. Как правило, электроконструкции поступают с заводов-изготовителей с выполненным монтажом каналов. При отсутствии каналов они устанавливаются в соответствии с проектной документацией.

5.3. Каналы следует крепить к электроконструкциям скобами с применением насечных заклепок, входящих в принадлежности для монтажа каналов (см. табл. 5.3). Кроме того, каналы можно приклеивать к панелям самоклеящейся лентой.

5.4. При небольшом количестве прокладываемых проводов, а также в местах перехода на двери шкафов целесообразно использовать каналы круглого сечения (см. рис. 5.2 и табл. 5.2). Монтаж таких каналов по стенкам электроконструкций аналогичен монтажу каналов прямоугольного сечения.
Таблица 5.1.
Основные характеристики каналов прямоугольного сечения








Поперечное сечение канала

Перфорация боковой поверхности А

Перфорация боковой поверхности В







Перфорация дна по EN 50085.

Ширина канала 20, 25, 37 и 50 мм

Перфорация дна по EN 50085.

Ширина канала 75,100 и 125 мм

Зажим для фиксации проводов

Рис 5.2. Вид канала круглого сечения
Размеры каналов (высоташиринадлина), мм:

21×23×500, 31×33×500, 45×43×500.


Таблица 5.2.
Основные характеристики каналов круглого сечения








Вид сбоку VK flex 10

Крепежная планка VK flex 10

Вид сбоку VK flex 20, 30, 40





Крепежная планка VK flex 20, 30

Крепежная планка VK flex 40


Таблица 5.3.
Принадлежности для монтажа каналов










Ограничитель

Насечная заклепка

Инструмент для крепления насечной заклепки







Клещи для выкусывания элементов перфорации боковой поверхности

Ограничитель

Насечная заклепка

Инструмент для крепления насечной заклепки









Манжетная шайба М4-М5

Насечная заклепка

Инструмент для крепления насечной заклепки

Ножницы для резки каналов


6. Монтаж крепежных элементов для электроаппаратуры
6.1. Размещение крепежных элементов

6.1.1. Настоящий раздел является одним из примеров монтажа крепежных элементов. Набор элементов и размещение их в электроконструкции определяется проектом.

6.1.2. Элементы электроаппаратуры внутри электроконструкций крепятся к перфорированным монтажным стойкам.

6.1.3. В перфорированных монтажных стойках электроконструкций следует различать две стороны: переднюю и внутреннюю (см. рис. 6.1.1).

6.1.4. Передняя сторона.

К наружной стороне монтажных стоек (см. рис. 6.1.2) крепят монтажные рейки и пластины для аппаратов стационарной установки с передним подключением. Вырезы предназначены для клипс для винтов (см. рис. 6.1.4). Клипсы закрепляются поворотом на 1/4 оборота. Отверстия диаметром 6 мм используются для уголков на концах монтажных стоек. В монтажных стойках имеются также отверстия диаметром 4,5 мм.







Рис. 6.1.1. Стороны перфорированных монтажных стоек

Рис. 6.1.2. Отверстия на передней стороне стойки





Рис. 6.1.3. Прорези отверстия на внутренней стороне стойки

Рис. 6.1.4. Установка клипсы под самонарезающий винт


6.1.5. Внутренняя сторона.

К внутренней стороне монтажных стоек (см. рис. 6.1.3) крепят регулируемые по глубине электроконструкции монтажные рейки. Кроме того, к внутренним сторонам крепят монтажные пластины для устройств ввода резервного питания.

Через каждые 50 мм в стойке расположены прорези. Фиксация пластин по глубине осуществляется через продолговатые отверстия в стойке.
6.2. Крепление монтажных реек

6.2.1. Точки крепления монтажной рейки определяются высотой и расположением лицевой панели. Середина вилочного кронштейна, к которому крепится монтажная рейка, должна располагаться по оси секции лицевой панели. Верхняя точка монтажной стойки соответствует верхней точке первой секции лицевой панели. Это точка называется опорной или нулевой (см. рис. 6.2.1).

6.2.2. Пример. Установка двух монтажных реек и секций лицевой панели в верхней части электроконструкции:

- первая секция лицевой панели: высота h1 = 300 мм. Положение вилочных кронштейнов относительно нулевой точки: 300/2 =150 мм.

- вторая секция лицевой панели: высота h2 = 200 мм. Положение вилочных кронштейнов относительно нижней точки первой секции: 200/2 = 100 мм. Таким образом, расстояние от нулевой точки равно: 300 + 100 = 400 мм.
6.3. Установка монтажных пластин

6.3.1. Точки крепления монтажных пластин для автоматических выключателей располагаются по оси соответствующей лицевой панели. Клипсы вставляются в отверстия, расположенные ближе к середине электроконструкции (см. рис. 6.3.1).

6.3.2. Пример. Установка двух монтажных пластин и секций лицевой панели в верхней части электроконструкции.

- первая секция лицевой панели: высота h1 = 400 мм. Отверстия, в которые необходимо вставить клипсы, расположены относительно нулевой точки на расстоянии: 400/2 = 200 мм.

- вторая секция лицевой панели: высота h2 = 300 мм. Отверстия для винтов, расположены относительно нижнего края первой секции лицевой панели на расстоянии: 300/2 =150 мм.

Таким образом, расстояние от нулевой точки составляет: 400 + 150 = 550 мм.







Рис. 6.2.1. Крепление монтажной рейки к монтажной стойке

Рис. 6.3.1. Крепление монтажных пластин для автоматических выключателей к монтажным стойкам.


6.4. Монтаж регулируемых крепежных элементов и пластин

6.4.1. Регулируемые по глубине электроконструкции крепежные элементы позволяют вертикально установить автоматические выключатели любого исполнения. Регулируемые по глубине электроконструкции монтажные пластины предназначены для горизонтальной установки аппаратов.

Рис. 6.4.1. Регулируемые крепежные элементы и пластины
6.4.2. Размещение по высоте.

На лицевой поверхности крепежных элементов нанесены метки , соответствующие оси секции лицевой панели.

Определение точек крепления монтажных элементов с учетом того, что аппараты ограждаются в верхней части шкафа двумя секциями лицевой панели высотой по 300 мм. Первая монтажная пластина имеет высоту 150 мм, вторая - 450 мм.

6.4.3. Размещение по глубине.

При установке аппаратов с большой глубиной необходимо отодвинуть их как можно дальше вглубь электроконструкции, так, чтобы хватило места для размещения поворотных ручек, электродвигательных приводов и т.п. Аппараты с небольшой глубиной следует выдвинуть. Для монтажа аппаратов используется регулятор глубины, имеющий 6 положений размещения аппарата по глубине электроконструкции, обозначенных буквами от А до F (см. рис. 6.4.2-6.4.3).





Рис. 6.4.2. Крепление регулятора глубины на монтажной стойке.

Рис. 6.4.3. 6 положений размещения аппарата по глубине электроконструкции, обозначаемые буквами от А до F


6.4.4. Установить монтажную пластину в нужном положении (см. рис. 6.4.4)

6.4.5. Пружину для фиксации крепежного элемента и монтажной пластины можно установить как справа, так и слева (см. рис. 6.4.5).

6.4.6. При нажатии на пружину пластина освобождается.





Рис. 6.4.4. Установка монтажной пластины

Рис. 6.4.5. Установка пружины


7. Монтаж наборных зажимов
7.1. Способы подключения проводов в наборных зажимах

7.1.1. Винтовая клемма.

7.1.1.1. Принцип действия зажима.

Корпуса клемм сконструированы таким образом, что при затягивании винтов зажима происходит эластичная деформация корпуса клеммы. Тем самым компенсируется усталостное течение зажимаемого провода. Благодаря деформации резьбовой части предотвращается ослабление винта зажима при механической (например, при вибрации) и тепловой нагрузке (при перепадах температуры).

Клеммы не требуют никакого обслуживания.

В механизме винтовой клеммы оптимально объединены лучшие свойства стали и меди. Корпус клеммы и прижимной винт изготовлены из закаленной стали, позволяющей создать высокое усилие зажима провода. Зажимной механизм прижимает подключаемый провод к токоведущей шине, изготовленной из меди или электротехнической латуни высокого качества. Контакт провода и клеммы получается герметичным и устойчивым к ударам и вибрациям.

Провод прижимается к контактной площадке с помощью винта и скобы. Необходимое усилие прижима достигается винтовым соединением. С увеличением усилия при кручении происходит трение жил провода из-за деформации изоляционного материала клеммы, что позволяет достичь максимального усилия прижима и наименьшего падения напряжения.

7.1.1.2. Преимущества винтового типа подсоединения:

- наивысшее усилие прижима и надежность контакта;

- диапазон площади поперечного сечения провода: от 0.08 до 240 мм2;

- наименьшие падения напряжения;

- возможность подсоединения нескольких проводов.

7.1.1.3. Защита клеммы от вибраций.

При завинчивании прижимного винта стальной корпус зажимной клетки деформируется, и верхняя пластина отходит от корпуса клетки. Верхняя пластина зажимает провод, работая аналогично пружинной шайбе. Этот пружинящий прижимной механизм делает винтовые клеммы устойчивыми к вибрациям.

Пружинящий зажим надежно держит подключенный провод, что устраняет необходимость подтягивания винтов при эксплуатации.

7.1.1.4. Подключение проводов.

Корпуса клемм сделаны таким образом, чтобы обеспечить надежный зажим одножильных, многожильных и гибких многожильных проводников с обжимными гильзами или без них.

Нажимное устройство или прижимная скоба предотвращают повреждение зажимаемых проводников.

При затягивании клеммных винтов рекомендуется придерживать проводник во избежание деформации монтажной шины и чтобы не подвергать основание клеммы воздействию крутящих сил.

Через несколько дней соединение необходимо дополнительно подтянуть.

7.1.2. ТОР система (торцевое подключение проводов).

7.1.2.1. Система ТОР разработана для обеспечения возможности торцевого подключения проводов со стороны прижимного винта, что обеспечивает удобство при монтаже в тесных условиях, например, в компактных клеммных коробках. Стальные детали и винт обеспечивают высокое усилие прижима провода к токовой шине, выполненной из меди или высококачественной латуни. Электрический контакт получается стабильным, герметичным и устойчивым к вибрациям.

7.1.2.2. Защита клеммы от вибраций.

При затягивании винта металлическая клетка эластично деформируется и подпружинивает стальной винт, предупреждая его постепенное раскручивание. Сила такой стальной пружины достаточна для поддержания высокого давления в точке контакта с проводом и придания винтовой клетке большой вибростойкости.

Клеммы системы ТОР не требуют никакого обслуживания или сервисных работ.

7.1.3. Пружинный зажим.

7.1.3.1. Принцип действия зажима.

В пружинных клеммах также разделены функции между механическим прижимом и электрическим контактом.

Пружина из закаленной и кислотостойкой нержавеющей стали прижимает провод к медной токоведущей шине. Специальная форма и гальваническое покрытие токовой шины оловом гарантируют низкое переходное сопротивление контакта. Благодаря максимальному пространству для подключения проводов клеммы с пружинными зажимами обеспечивают возможность быстрого монтажа гибких и жестких проводов, в том числе и проводов номинального сечения с установленной обжимной гильзой.

Пружинные клеммы не нуждаются в обслуживании.

Принцип пружинного подсоединения идентичен винтовому типу подсоединения. Пружина обеспечивает контакт провода и контактной площадки. Пружинное соединение универсальное, предполагает короткое время на монтаж, не требует дополнительного обслуживания, ударо- и виброустойчивое.

Пружина клеммы открывается с помощью отвертки, проводник вводится до упора и после извлечения отвертки захватывается зажимом. Хромоникелевая пружинная сталь зажима обеспечивает устойчивый к коррозии и вибрациям контакт проводника и клеммы.

7.1.3.2. Преимущества пружинного типа подсоединения.

- вибро- и удароустойчивое соединение;

- диапазон площади поперечного сечения кабеля: 0.08-16 мм2;

- более короткое время монтажа по сравнению с винтовым типом подсоединения.

7.1.3.3. Подключение проводников.

Благодаря системе пружинных зажимов одножильные, многожильные и гибкие многожильные проводники могут надежно подключаться без обжимных гильз. Рекомендуется подключать один проводник к одному зажиму. Приемная воронка для провода (она же ограничитель изоляции) сконструирована таким образом, что изоляция на проводе с номинальным поперечным сечением и следующего меньшего сечения не может пройти в зажим (длина снятия изоляции указана на клемме). В качестве защиты от расщепления гибких многожильных проводников рекомендуется лужение концов или уплотнение ультразвуком.

7.1.4. Технология IDC

7.1.4.1. Принцип действия зажима.

Технология IDC (Insulation Displacement Connection - создание контакта путем прорезания изоляции) отличается тем, что для монтажа не требуется ни снятия изоляции с провода, ни обжим кабельного наконечника. Она объединяет преимущества пружинного метода соединения с возможностью подсоединять провода без использования специальных инструментов. Нет необходимости в защите места присоединения от прикосновения. Провода необходимо отрезать по размеру и присоединить.

При подключении в клемме контактный элемент прорезает изоляцию провода и надежно зажимает его. Пружинящие точки контактирования гарантируют нагрузочную способность по току 24 А, надежный электрический контакт провода с токовой шиной клеммы и механическое закрепление провода за его изоляцию.

В клеммах IDC разделены электрическая и механическая функции. Пружина из нержавеющей стали прижимает токовую шину к проводнику и обеспечивает низкое переходное сопротивление. Контакт отличается герметичностью и вибростойкостью.

7.1.4.2. Преимущества клемм для быстрого зажима.

- непосредственный контакт без применения инструментов;

- диапазон площади поперечного сечения кабеля: 0.08-4 мм2;

- простота в эксплуатации;

- компактные размеры;

- экономия до 80 % времени монтажа;

- не требуются инструменты для соединения.

7.1.4.3. Подключение проводников.

Одножильные или многожильные провода вставляются непосредственно в зажим. При помощи отвертки производится монтаж или демонтаж проводов. Отверткой промежуточная колодка с вставленным проводом поворачивается до упора провода в контактную планку с прорезью. Контакт с контактной планкой осуществляется автоматически, когда провод вставляется в клемму.

7.1.5. Техника штекерного подключения

7.1.5.1. В клеммах с прямым штекерным подключением одножильный изолированный провод вставляется подобно штекеру измерительного прибора. Монтаж не требуется никакого инструмента. Контакт получается надежным, герметичным и вибростойким. При применении гильзового кабельного наконечника в штекерную клемму можно подключить многожильный гибкий провод.

Пружина и направляющая клетка из нержавеющей стали гарантируют прижим провода к медной токоведущей шине с усилием большим, чем в пружинных клеммах. Гальваническое покрытие оловом гарантирует низкое сопротивление контакта и коррозионную стойкость. Направляющая клетка позволяет отключить провод от клеммы при помощи отвертки.
7.2. Типы используемых клемм для наборных зажимов

7.2.1. Клеммы РЕ

7.2.1.1. Клемма РЕ - компонент с одной или несколькими положениями зажима для подсоединения и/или разветвления проводников РЕ при помощи проводящего соединения с их опорой. Несущие рейки для наборных клемм часто применяются в качестве сборных защитных проводников. Защитные клеммы РЕ образуют соединение с несущей DIN-рейкой.

Поскольку необходимость в отдельной сборной шине РЕ отпадает, клеммы РЕ могут чередоваться с изолированными клеммами главных проводников и N-клеммами с разъединителями. Благодаря этому достигается наглядность расположения отдельных цепей.

7.2.2. Клеммы с предохранителем

7.2.2.1. Клеммы с предохранителем состоят из клеммного основания и держателя предохранителя.

Клеммы выполняют две задачи:

- являются держателями предохранительных вставок,

- выполняют функцию распределения напряжения.

7.2.2.2. Сквозной канал для перемычек обеспечивает сквозное соединение проходных клемм и клемм с предохранителями при помощи перемычек.

7.2.3. Многоэтажные распределительные клеммы

7.2.3.1. Многоэтажная распределительная клемма - это блок с зажимами для подключения и/или разветвления сигнальных, заземляющих или нейтральных проводов. Клеммы можно набирать в клеммный ряд и устанавливать в общем ряду с проходными шинными клеммами.

7.2.3.2. Многоэтажные клеммы могут содержать несколько изолированных друг от друга этажей для подключения проводов.

7.2.3.3. В распределительных клеммах в замкнутом пространстве находятся точки подключения внешнего проводника и/или проводников N и РЕ. Места подключения защитного провода заранее обозначены желто-зеленым, а нейтрального провода - синим цветом.

7.2.4. Шинные клеммы с расцепителем для нейтрального провода

7.2.4.1. Данные клеммы служат для подключения проводов к нейтральной шине с возможностью разрыва этого соединения расцепителем в клемме.

Клеммы могут устанавливаться в общем ряду с проходными шинными клеммами.

7.2.5. Измерительные шинные клеммы с размыкателями

7.2.5.1. Измерительные шинные клеммы с размыкателями служат для временного размыкания токовых цепей для измерительных целей, но не под нагрузкой.

7.2.5.2. Рабочее напряжение клемм соответствует напряжению изоляции, для которого проводятся соответствующие измерения сопротивления и утечек по поверхности диэлектрика корпуса клеммы.

7.2.5.3. Разрыв цепи характеризуется пиковым рабочим напряжением.

7.2.6. Шинные клеммы с размыкателями

7.2.6.1. Шинные клеммы с размыкателями служат для разрыва токовых цепей, но не под нагрузкой.

7.2.6.2. Рабочее напряжение соответствует напряжению изоляции, для которого проводятся измерения сопротивления изоляции и утечек по поверхности диэлектрика корпуса клеммы.

7.2.6.3. Размыкатель используется только для работы не под нагрузкой и служит для отключения всей установки или какой-то отдельной ее части.
7.3. Монтаж наборных зажимов

7.3.1. Наборные зажимы следует собирать на DIN-рейках шириной 35 мм, размещаемых на электроконструкциях (щитах, пультах, ячейках и т.п.) и закрепляемых в зависимости от местных условий горизонтально, вертикально, под углом 35°, на рамах или на изолирующих опорах (см. Приложение 4). Крепление реек винтами или самонарезающими винтами (саморезами) осуществляется через отверстия в центре основания рейки (см. рис. 7.3.1).

Рис. 7.3.1. DIN-рейка
7.3.2. При монтаже наборных зажимов следует:

- отрезать рейку зажимов необходимой длины;

- установить рейку на электроконструкции в соответствии с проектной документацией;

- подобрать, проверить и очистить от пыли наборные зажимы;

- установить и собрать зажимы на рейке. Клеммы защелкиваются на несущую рейку и защищаются от смещения концевым держателем. Между клеммами следует учитывать допуск на выравнивание рядов 0,2 мм;

- закрепить на собранных на рейке наборных зажимах маркировочные колодки (см. рис. 7.3.2). Дополнительно имеется возможность надписывать каждое место крепления провода отдельно.

7.3.3. В сборках рядов наборных зажимов рекомендуется устанавливать 10-15% резервных зажимов.

7.3.4. Зажимы, относящиеся к разным объектам, должны быть выделены в отдельные сборки. Для этого устанавливаются секционирующие разделительные перегородки, которые выступают над профилем клемм. Они обеспечивают визуальное и электрическое разделение групп (см. рис. 7.3.4).







Рис. 7.3.2. Маркировка наборных зажимов

Рис. 7.3.3. Измерительные переходники и наборные измерительные штекеры

Рис. 7.3.4. Секционирующие разделительные перегородки


7.3.5. При совместной установке зажимов, рассчитанных на различные напряжения, зажимы цепей напряжением 380/220 В и выше должны быть выделены, закрыты крышками и снабжены предупредительной надписью с указанием напряжения.

7.3.6. При монтаже сборок зажимов необходимо выдерживать следующие расстояния, обеспечивающие безопасность обслуживания:

- 30-50 мм от сборок зажимов до нижнего края щитка;

- 30 мм от рейки зажимов (скобы) до панели щитка;

- 150 мм между сборками зажимов при нескольких горизонтальных сборках.

7.3.7. Для шунтирования двух наборных зажимов применяются переходные перемычки, обеспечивающие соединение клемм различного номинального сечения (см. рис. 7.3.5, а). Переходные перемычки позволяют быстро монтировать клеммные блоки для ввода питания, например, объединить клемму типоразмера 10 мм2 с клеммой типоразмера 2,5 или 4 мм2. Штекерные перемычки (2-50-полюсные) сокращают время на монтаж, так как за одну операцию можно шунтировать до 50 клемм (см. рис. 7.3.5, б). Шунтирование с пропусками осуществляется посредством изъятия отдельных контактных штырьков из стандартной перемычки. Таким образом, при помощи клеммной колодки можно параллельно поддерживать несколько потенциалов (см. рис. 7.3.5, в).








а

б


в

Рис. 7.3.5. Шунтирование клемм


7.3.8. Для проверки и испытания второстепенных цепей следует применять измерительные переходники для измерительных щупов □ 4 мм и наборные измерительные штекеры (см. рис. 7.3.3). При помощи наборных измерительных щупов можно собирать измерительные переходники в соответствии с индивидуальными потребностями. Присоединение измерительного провода осуществляется посредством пружинного зажима сечением 1,5 мм2.

7.3.9. В универсальных штекерных зонах клемм с разъединителем можно использовать изолированные проходные соединители, разъединительные штекеры, штекеры для электронных компонентов и штекеры с предохранителями (см. рис. 7.3.6). Штекер для электронных компонентов обеспечивает оснащение системы управления и контроля электронными компонентами. Вращательным движением отвертки зажим открывается, после чего в штекер вставляется электронный компонент (см. рис. 7.3.7).

7.3.10. Для обеспечения защиты от прикосновения при обслуживании электрооборудования используются сегменты крышек для закрывания открытых частей клемм (см. рис. 7.3.8).






Рис. 7.3.6. Универсальные штекерные зоны клемм с разъединителем

Рис. 7.3.7. Установка электронного компонента в универсальной штекерной зоне клемм

Рис. 7.3.8. Сегменты крышек для закрывания открытых частей клемм


страница 1страница 2страница 3 ... страница 6страница 7


скачать

Другие похожие работы: