NetNado
  Найти на сайте:

Учащимся

Учителям



Реферат на тему: Биотехнология. Студент гр. 32-6




Министерство образования Российской Федерации

Сибирский Государственный Технологический Университет


Кафедра Физиологии

РЕФЕРАТ
На тему: Биотехнология.

Выполнил: Студент гр.32-6
Мулява Владимир Валерьевич

Проверила:Сунцова Людмила Николаевна

Красноярск 2001г.
Содержание

ВВЕДЕНИЕ 3

БИОТЕХНОЛОГИЯ НА СЛУЖБЕ НАРОДНОГО ХОЗЯЙСТВА, ЗДРАВООХРАНЕНИЯ И НАУКИ 5

1. Биотехнология и сельское хозяйство 5

Биотехнология и растениеводство 5

Биотехнология и животноводство. 10

2. Технологическая биоэнергетика 11

Получение этанола как топлива. 11

Получение метана и других углеводородов. 12

Получение водорода как топлива будущего. 13

Пути повышения эффективности фотосинтетических систем. 14

Биотопливные элементы. 15

3. Биотехнология и медицина 15

Антибиотики. 15

Гормоны. 17

Интерфероны, интерлейкины, факторы крови. 18

Моноклокальные антитела и ДНК-или РНК-пробы. 19

Рекомбинантные вакцины и вакцины-антигены. 20

Ферменты медицинского назначения. 21

4. Биотехнология и пищевая промышленность 22

5. Биогеотехнология 24

ЗАКЛЮЧЕНИЕ 25

Список используемой литературы. 28

ВВЕДЕНИЕ


С древних времен известны отдельные биотехнологические процессы, используемые в различных сферах практической дея­тельности человека. К ним относятся хлебопечение, виноделие, приготовление кисло-молочных продуктов и т. д. Однако биоло­гическая сущность этих процессов была выяснена лишь в XIX в., благодаря работам Л. Пастера. В первой половине XX в. сфера приложения биотехнологии пополнилась микробиологическим производством ацетона и бутанола, антибиотиков, органических кислот, витаминов, кормового белка.

Немаловажный вклад в биотехнологические разработки внесли советские исследователи: в СССР в 30-е годы были построены первые заводы по получению кормовых дрожжей на гидролизатах древесины, сельскохозяйственных отходах и сульфитных щелоках, под руководством В. Н. Шапошникова успешно внедрена технология микробиологического производства ацетона и бутанола. Большую роль в создание основ отече­ственной биотехнологии внесло учение Шапошникова о двухфаз­ном характере брожения. В 1926 г. в СССР были исследованы биоэнергетические закономерности окисления углеводородов микроорганизмами. В последующие годы биотехнологические разработки широко использовались в нашей стране для расши­рения «ассортимента» антибиотиков для медицины и животно­водства, ферментов, витаминов, ростовых веществ, пестицидов.

С момента создания в 1963 г. Всесоюзного научно-исследо­вательского института биосинтеза белковых веществ в на­шей стране налаживается крупнотоннажное производство бога­той белками биомассы микроорганизмов как корма. В 1966 г. микробиологическая промышленность была выделена в отдель­ную отрасль (Главное управление микробиологической промыш­ленности при Совете Министров СССР — Главмикробиопром). Имеются ценные разработки по получению новых источников энергии биотехнологическим путем (технологическая биоэнерге­тика), отметим большое значение биогаза - заменителя топлива, получаемого из недр земли.

Значительные успехи, достигнутые во второй половине XX в. в фундаментальных исследованиях в области биохимии, био­органической химии и молекулярной биологии, создали предпо­сылки для управления элементарными механизмами жизнедея­тельности клетки, что явилось мощным импульсом для развития биотехнологии. Выяснение роли нуклеиновых кислот в передаче наследственной информации, расшифровка генетического кода, раскрытие механизма индукции и репрессии генов, совершен­ствование технологии культивирования микроорганизмов, клеток и тканей растений и животных позволили разработать методы

генетической и клеточной инженерии, с помощью которых можно искусственно создавать новые формы высокопродуктивных орга­низмов. Генетическая и клеточная инженерия рассматривается как принципиально новое направление биологической науки, которое сегодня ставят в один ряд с расщеплением атома, прео­долением земного притяжения и созданием средств электроники (Ю. А. Овчинников, 1985).

В разработку генноинженерных методов советские исследова­тели включились в 1972 г. Следует указать на успешное осу­ществление проекта «Ревертаза» — получение в промышленных масштабах обратной транскриптазы в СССР.

С 1970 г. в нашей стране ведутся интенсивные исследования по селекции культур для непрерывного культивирования в про­мышленных целях.

Развитие методов для изучения структуры белков, выяснение механизмов функционирования и регуляции активности фермен­тов открыли путь к направленной модификации белков и привели к рождению инженерной энзимологии. Иммобилизованные фер­менты, обладающие высокой стабильностью, становятся мощным инструментом для осуществления каталитических реакций в раз­личных отраслях промышленности.

Все эти достижения поставили биотехнологию на новый уро­вень, качественно отличающийся от прежнего возможностью сознательно управлять клеточными процессами. В современном звучании биотехнология — это промышленное использование биологических процессов и агентов на основе получения высоко­эффективных форм микроорганизмов, культур клеток и тканей растений и животных с заданными свойствами.

Биотехнология — междисциплинарная область научно-технического прогресса, возникшая на стыке биологических, химических и технических наук.

Биотехнологический процесс включает ряд этапов: подготовку объекта, его культивирование, выделение, очистку, модификацию и использование продуктов. Многоэтапность процесса обусловли­вает необходимость привлечения к его осуществлению самых различных специалистов: генетиков и молекулярных биологов, биохимиков и биооргаников, вирусологов, микробиологов и кле­точных физиологов, инженеров-технологов, конструкторов био­технологического оборудования и др.

В Комплексной программе научно-технического прогресса стран — членов СЭВ в качестве первоочередных задач биотехно­логии определены создание и широкое народнохозяйственное освоение:

— новых биологически активных веществ и лекарственных препаратов для медицины (интерферонов, инсулина, гормонов роста человека, моноклональных антител и т.д.), позволяющих осуществить в здравоохранении раннюю диагностику и лечение тяжелых заболеваний — сердечно-сосудистых, злокачественных, наследственных, инфекционных, в том числе вирусных;

— микробиологических средств защиты растений от болезней и вредителей, бактериальных удобрений и регуляторов роста растений; новых высокопродуктивных и устойчивых к неблаго­приятным факторам внешней среды сортов и гибридов сельско­хозяйственных растений, полученных методами генетической и клеточной инженерии;

— ценных кормовых добавок и биологически активных ве­ществ (кормового белка, аминокислот, ферментов, витаминов, ветеринарных препаратов и др.) для повышения продуктивности животноводства; новых методов биоинженерии для эффективной профилактики, диагностики и терапии основных болезней сель­скохозяйственных животных;

— новых технологий получения хозяйственно ценных продук­тов для использования в пищевой, химической, микробиологи­ческой и других отраслях промышленности;

— технологий глубокой и эффективной переработки сельско­хозяйственных, промышленных и бытовых отходов, использова­ния сточных вод и газовоздушных выбросов для получения биогаза и высококачественных удобрений.

По оценкам специалистов, мировой рынок биотехнологиче­ской продукции уже к середине 90-х годов достигнет уровня 130—150 млрд. руб. (Ю. А. Овчинников, 1985).

На пути решения поставленных задач биотехнологию подсте­регают немалые трудности, связанные с исключительной слож­ностью организации живого. Любой биообъект — это целостная система, в которой нельзя изменить ни один из элементов, не меняя остальных, нельзя произвольно перекомбинировать их, придавая организму то или иное желаемое свойство, например бактерии — способность к сверхсинтезу требуемой аминокислоты, сельскохозяйственному растению — устойчивость к фитопатоген-ным грибкам. Любое воздействие на объект вызывает не только желаемые, но и побочные эффекты; перестройка генома сказы­вается сразу на многих признаках организма. У человека суще­ствуют гены, отвечающие за злокачественное перерождение клеток. Высказывалось немало идей о необходимости превентив­ных генетических операций, пока не было установлено, что эти гены необходимы и для нормального роста. Помимо этого, экосистема также представляет собой целостную систему и изме­нения каждого из ее компонентов сказываются на остальных компонентах. Не исключено, что плазмида, с помощью которой трансплантирован желаемый ген культурному растению, будет далее передаваться сорнякам. Не будет ли в результате генных манипуляций превращаться в сорняк само культурное растение?

Успехи, достигнутые в области генетической и клеточной инженерии на простейших биологических системах, прокариотных организмах, вселяют уверенность в преодолимость рассмот­ренных трудностей. Что касается более сложных систем, а имен­но эукариотных организмов, то здесь делаются лишь первые шаги, идет накопление фундаментальных знаний.

БИОТЕХНОЛОГИЯ НА СЛУЖБЕ НАРОДНОГО ХОЗЯЙСТВА, ЗДРАВООХРАНЕНИЯ И НАУКИ


Биотехнологические разработки могут внести немаловажный вклад в решение комплексных проблем народного хозяйства, здравоохранения и науки.

Для удовлетворения пищевых потребностей необходимо уве­личить эффективность растениеводства и животноводства. Имен­но на это, в первую очередь, нацелены усилия биотехнологов. Кроме того, биотехнология предлагает как источник кормового (возможно, и пищевого) белка клеточную массу бактерий, гри­бов и водорослей.

Во-вторых, повышение цен на традиционные источники энер­гии (нефть, природный газ, уголь) и угроза исчерпания их запа­сов побудили человечество обратиться к альтернативным путям получения энергии. Биотехнология может дать ценные возобнов­ляемые энергетические источники: спирты, биогенные углеводо­роды, водород. Эти экологически чистые виды топлива можно получать путем биоконверсии отходов промышленного и сельско­хозяйственного производства.

В-третьих, уже в наши дни биотехнология оказывает реаль­ную помощь здравоохранению. Нет сомнений в терапевтической ценности инсулина, гормона роста, интерферонов, факторов свер­тывания крови и иммунной системы, тромболитических фермен­тов, изготовленных биотехнологическим путем. Помимо получе ния лечебных средств, биотехнология позволяет проводить ран­нюю диагностику инфекционных заболеваний и злокачественных новообразований на основе применения препаратов антигенов, моноклональных антител, ДНК/РНК-проб. С помощью новых вакцинных препаратов возможно предупреждение инфекционных болезней.

В-четвертых, биотехнология может резко ограничить масшта­бы загрязнения нашей планеты промышленными, сельскохозяй­ственными и бытовыми отходами, токсичными компонентами ав­томобильных выхлопов и т. д. Современные разработки нацелены

на создание безотходных технологий, на получение легко раз­рушаемых полимеров (в частности, биогенного происхождения: поли-b-оксибутирата, полиамилозы) и поиск новых активных микроорганизмов-разрушителей полимеров (полиэтилена, поли­пропилена, полихлорвинила). Усилия биотехнологов направлены также на борьбу с пестицидными загрязнениями — следствием неумеренного и нерационального применения ядохимикатов.

Биотехнологические разработки играют важную роль в добы­че и переработке полезных ископаемых, получении различных препаратов и создании новой аппаратуры для аналитических целей.

1. Биотехнология и сельское хозяйство

Биотехнология и растениеводство


Культурные растения стра­дают от сорняков, грызунов, насекомых-вредителей, нематод, фитопатогенных грибов, бактерий, вирусов, неблагоприятных погодных и климатических условий. Перечисленные факто­ры наряду с почвенной эрозией и градом значительно снижают урожайность сельскохозяйственных растений. Известно, какие разрушительные последствия в картофелеводстве вызывает коло­радский жук, а также гриб Phytophtora — возбудитель ранней гнили (фитофтороза) картофеля. Кукуруза подвержена опустоши­тельным «набегам» южной листовой гнили, ущерб от которой в США в 1970 г. был оценен в 1 млрд. долларов.

В последние годы большое внимание уделяют вирусным за­болеваниям растений. Наряду с болезнями, оставляющими види­мые следы на культурных растениях (мозаичная болезнь табака и хлопчатника, зимняя болезнь томатов), вирусы вызывают скрытые инфекционные процессы, значительно снижающие уро­жайность сельскохозяйственных культур и ведущие к их вырож­дению.

Биотехнологические пути защиты растений от рассмотренных вредоносных агентов включают: 1) выведение сортов растений, устойчивых к неблагоприятным факторам; 2) химические сред­ства борьбы (пестициды) с сорняками (гербициды), грызунами (ратициды), насекомыми (инсектициды), нематодами (нематоциды), фитопатогенными грибами (фунгициды), бактериями, ви­русами; 3) биологические средства борьбы с вредителями, ис­пользование их естественных врагов и паразитов, а также ток­сических продуктов, образуемых живыми организмами.

Наряду с защитой растений ставится задача повышения про­дуктивности сельскохозяйственных культур, их пищевой (кормо­вой) ценности, задача создания сортов растений, растущих на засоленных почвах, в засушливых и заболоченных районах. Раз­работки нацелены на повышение энергетической эффективности различных процессов в растительных тканях, начиная от погло­щения кванта света и кончая ассимиляцией СО2 и водно-солевым обменом.

Выведение новых сор­тов растений. Традицион­ные подходы к выведению новых сортов растений — это селекция на основе гибридизации, спонтан­ных и индуцированных мутаций. Методы селекции не столь отда­ленного будущего включают гене­тическую и клеточную инженерию.

Генетическую инженерию пред­лагают использовать для выведе­ния азотфиксирующих растений. В природных услови­ях азотфиксирующие клубенько­вые бактерии, представители рода Rhizobium, вступают в симбиоз с бобовыми. Комплекс генов азотфиксации (nif) из этих или иных бактерий предлагают вклю­чить в геном злаковых культур. Трудности связаны с поиском подходящего вектора, поскольку широко используемые для подоб­ных целей Agrobacterium с плазмидами Ti и Ri не заселяют злаки. Планируют модификацию генома Agrobacterium, чтобы бакте­рия могла вступать в симбиоз со злаками и передавать им гене­тическую информацию. Другим решением проблемы могла бы быть трансформация растительных протопластов посредством ДНК. К компетенции клеточной инженерии относят создание но­вых азотфиксирующих симбиотических ассоциаций «растение — микроорганизм».

В настоящее время выделены и клонированы гены sym, от­вечающие за установление симбиотических отношений между клубеньковыми азотфиксаторами и растением-хозяином. Путем переноса этих генов в свободноживущие азотфиксирующие бак­терии (Klebsiella, Azotobacter) представляется возможным за­ставить их вступить в симбиоз с ценными сельскохозяйственными культурами. Методами генетической инженерии предполагают также повысить уровень обогащения почвы азотом, амплифици-руя гены азотфиксации у Klebsiella и Azotobacter.

Разрабатываются подходы к межвидовому переносу генов asm, обусловливающих устойчивость растений к нехватке влаги, жаре, холоду, засоленности почвы. Перспективы повышения эф­фективности биоконверсии энергии света связаны с модифика­цией генов, отвечающих за световые и темновые стадии этого процесса, в первую очередь генов cfx, регулирующих фиксацию СО2 растением. В этой связи представляют большой интерес

разработки по межвидовому переносу генов, кодирующих хлоро­филл а/b-связывающий белок и малую субъединицу рибулозо-бис-фосфаткарбоксилазы — ключевого фермента в фотосинтети­ческой фиксации СО2.

Гены устойчивости к некоторым гербицидам, выделенные из бактерий и дрожжей, были успешно перенесены в растения таба­ка. Разведение устойчивых к гербицидам растений открывает возможность их применения для уничтоже­ния сорняков непосредственно на угодьях, занятых сельскохозяй­ственными культурами. Проблема состоит, однако, в том, что массивные дозы гербицидов могут оказаться вредными для при­родных экосистем.

Некоторые культурные растения сильно страдают от нематод. Обсуждается проект введения в растения новых генов, обуслов­ливающих биосинтез и выделение нематоцидов корневыми клет­ками. Важно, чтобы эти нематоциды не проявляли токсичности по отношению к полезной прикорневой микрофлоре. Возможно также создание почвенных ассоциаций «растение — бактерия» или «растение — гриб (микориза)» так, чтобы бактериальный (грибной) компонент ассоциации отвечал за выделение немато­цидов.

Важное место в выведении новых сортов растений занимает метод культивирования растительных клеток in vitro. Регенери­руемая из таких клеток «молодая поросль» состоит из идентич­ных по генофонду экземпляров, сохраняющих ценные качества избранного клеточного клона. В Австралии из культивируемых in vitro клеточных клонов выращивают красные камедные де­ревья (австралийские эвкалипты), отличающиеся способностью расти на засоленных почвах. Предполагается, что корни этих растений будут выкачивать воду из таких почв и тем самым по­нижать уровень грунтовых вод. Это приведет к снижению засо­ленности поверхностных слоев почвы в результате переноса мине­ральных солей в более глубокие слои с потоками дождевой воды. В Малайзии из клеточного клона получена масличная пальма с повышенной устойчивостью к фитопатогенам и увеличенной способностью к образованию масла (прирост на 20—30%). Клонирование клеток с последующим их скринингом и регенерацией растений из отобранных клонов рассматривают как важный метод сохранения и улучшения древесных пород умеренных широт, в частности хвойных деревьев. Растения-регенеранты, выращенные из клеток или тканей меристемы, используют ныне для разведения спаржи, земляники, брюссельской и цветной капусты, гвоздик, папорот­ников, персиков, ананасов, бананов.

С клонированием клеток связывают надежды на устранение вирусных заболеваний растений. Разработаны методы, позволя­ющие получать регенеранты из тканей верхушечных почек расте­ний. В дальнейшем среди регенерированных растений проводят отбор особей, выращенных из незараженных клеток, и выбраковку больных растений. Раннее выявление вирусного заболевания, необходимое для подобной выбраковки, может быть осуществ­лено методами иммунодиагностики, с использованием моноклональных антител или методом ДНК/РНК-проб. Предпосылкой для этого является получение очищенных препаратов соответ­ствующих вирусов или их структурных компонентов.

Клонирование клеток — перспективный метод получения не только новых сортов, но и промышленно важных продуктов. При правильном подборе условий культивирования, в частности при оптимальном соотношении фитогормонов, изолированные клетки более продуктивны, чем целые растения. Иммобилизация растительных клеток или протопластов нередко ведет к повыше­нию их синтетической активности. Табл. 6 включает биотехно­логические процессы с использованием культур растительных клеток, наиболее перспективные для промышленного внед­рения.

Коммерческое значение в основном имеет промышленное про­изводство шиконина. Применение растительных клеток, которые являются высокоэффективными продуцентами алкалоидов, терпе­нов, различных пигментов и масел, пищевых ароматических до­бавок (земляничной, виноградной, ванильной, томатной, сельде­рейной, спаржевой) наталкивается на определенные трудности, связанные с дороговизной используемых технологий, низким выходом целевых продуктов, длительностью производственного процесса.

Таким образом, биотехнология открывает широкие перспективы в области выведения новых сортов растений, устойчивых к неблагоприятным внешним воздействиям, вредителям, патогенам, не требующих азотных удобрений, отличающихся высокой продуктивностью.

Таблица 1. Примеры клеточных культур — высокоэффективных проду­центов ценных соединений (по О. Sahai, M. Knuth, 1985. К. Hahlbrock. 1986)


Вид растения


Целевой продукт


Предполагаемое применение


Lithospermum erithrorhizon (воробейник)


Шиконин и его производные


Красный пигмент, используемый в косметике как «биологическая губная помада», антибактериаль­ный агент, используемый при ле­чении ран, ожогов, геморроя


Nicotiana tabacum (та­бак)


Убихинон- 10


Важный компонент дыхательной и фотосинтетической цепей пере­носа электронов, применяемый как витамин и в аналитических целях


To же


Глутатион


Участник многих окислительно-восстановительных реакций в клет­ке, приравнивается к витамину


Morinda citrifolia


Антрахиноны


Сырье для лакокрасочной про­мышленности


Coleus blumei


Розмариновая кислота


Жаропонижающее средство, проходящее клинические испытания


Berberis stolonifera (барбарис)


Ятрорризин


Спазмолитическое лекарственное средство


страница 1страница 2 ... страница 4страница 5


скачать

Другие похожие работы:


Документы

архив: 1 стр.