NetNado
  Найти на сайте:

Учащимся

Учителям



Учебник для вузов. М.: Юнити, 2001. 510 с. Радкевич В. А. Экология. Минск: Вышэйшая школа, 1998. 159 с


МЕТОДЫ ЭКОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ. БОТАНИЧЕСКИЙ МОНИТОРИНГ

Москалюк Т.А.

Список литературы

Степановских А.С. Общая экология: Учебник для вузов. М.: ЮНИТИ, 2001. 510 с.

Радкевич В.А. Экология. Минск: Вышэйшая школа, 1998. 159 с.

Бигон М., Харпер Дж., Таунсенд К. Экология. Особи, популяции и сообщества / Пер. с англ. М.: Мир, 1989. В 2-х томах.

Программа и методика биогеоценологических исследований. М.: Наука, 1974. С.14-23.

Сукачев В.Н., Зонн С.В. Методические указания к изучению типов леса. М.: Изд-во АН СССР, 1961. С.1-104.

Молчанов А.А., Смирнов В.В. Методика изучения прироста древесных растений. М.: Наука, 1967, 95 с.

Уткин А.И. Изучение лесных биогеоценозов // Программа и методика биогеоценологических исследований. М.: Наука, 1974. С. 281-317.

Крылов А.Г. Жизненные формы лесных фитоценозов. Л.: Наука, 1984. 184 с.

Галанин А.В. Лекции по экологии.

 

1. Методологические подходы

Поскольку популяции и экосистемы сложены множеством организмов, поскольку на каждый организм и на их совокупности, будь то отдельная группировка, популяция или ценоз, действуют не один, а сразу несколько экологических факторов и к тому на протяжении разных отрезков времени, постольку и связи, и свойства перечисленных объектов оказываются многочисленными и разнообразными. Поэтому методологией, главным принципом всех экологических исследований является системный подход, учитывающий как особенности самих объектов исследований, так и факторов эти особенности определяющие.

В зависимости от того, что является объектом, и какова цель исследований используются разные подходы: популяционный (популяция – совокупность особей одного вида), экосистемный, эволюционный и исторический.

Популяционный подход предусматривает изучение размещения в пространстве, особенности поведения и миграции (у животных), процессов размножения (у животных) и возобновления (у растений), физиологических, биохимических, продукционных и других процессов, зависимости всех показателей от биотических и абиотических факторов. Исследования проводятся с учетом структуры и динамики (сезонной, онтогенетической, антропогенной) популяций, численности ее организмов. Популяционный подход обеспечивает теоретическую базу для прогнозирования рождаемости (в растит. сообществе – возобновления), выживания (динамики жизненного состояния) и смертности (распада, гибели). Он позволяет прогнозировать вспышки вредителей в лесном и сельском хозяйстве, позволяет выявить критическую численность вида, необходимую для его выживания.

Экосистемный подход выдвигает на первый план общность структурно-функциональной организации всех экосистем, независимо от от состава сообществ, среды и места их обитания. Основное внимание при этом подходе уделяется изучению потока энергии и циклам круговорота веществ в экосистемах, установлению функциональных связей между биологической составляющей и окружающей средой, т.е. между биотическими факторами и абиотическими. Экосистемный подход предусматривает всестороннее изучение всех популяций живых организмов сообщества (растения, микроорганизмы, животные) с учетом влияния на них ограничивающих факторов (эдафические, топографические, климатические). При этом подходе пристальное внимание уделяется анализу местообитаний, так как параметры факторов среды: физико-химические свойства почв, теплообеспеченность, влажность, освещенность, скорость ветра, и др., легко измеряются и поддаются классификации.

В качестве примера успешности экосистемного подхода к изучению биосферы можно привести итоги работы ученых из разных стран, работавших с 1964 по 1980 гг. по Международной биологической программе (МБП). Конечной целью МБП было выявление запасов и законов воспроизводства органического вещества, его качественного (фракционного) состава по всем природным зонам и в целом на планете, с тем, чтобы предотвратить возможные нарушения биологического равновесия в глобальном масштабе. Благодаря выполнению данной программы была решена актуальнейшая задача – выяснить максимально возможные нормы изъятия биомассы для нужд человечества.

Эволюционный и исторический подходы позволяют рассматривать изменения экосистем и их компонентов во времени. Эволюционный подход дает возможность понять основные закономерности, которые действовали в экосфере до того, как антропогенный фактор стал одним из определяющих. Он позволяет реконструировать экосистемы прошлого, принимая во внимание палеонтологические данные (анализ пыльцы, ископаемые остатки). В основе исторического подхода лежат изменения, обусловленные развитием цивилизации (от неолита до настоящего времени) и производствами, созданными человеком. К этим изменения относятся изменения климата, целенаправленное и случайное расселение человеком растений и животных.

Каждый из вышеуказанных подходов требует применения своих методов, специально разработанных с учетом состава объектов, условий местообитаний и поставленных задач.

2. Методы исследований

В экологии часто используются методы, применяемые в других науках, как в биологических (биогеохимия, анатомия, физиология, и др.), так и небиологических (физика, химия, геодезия, метеорология и др.). Но для выявления специфики экологических закономерностей существуют исключительно собственные – экологические методы. Они делятся на полевые, лабораторные, экспериментальные, количественные (математическое моделирование) методы.

Полевые методы имеют первостепенное значение. Они предполагают изучение популяций и сообществ в естественной среде (в природе) и позволяют установить воздействие на объект комплекса факторов, изучить общую картину развития и жизнедеятельности изучаемого объекта.

В качестве примера можно привести леса на склонах разных экспозиций, на разных почвах, на разных географических широтах. Или водные экосистемы на разной глубине в одном и том же море, на одной глубине в южных и северных морях. Все они, несмотря на различия, развиваются по одним и тем же законам, под влиянием комплекса факторов, но значения этих факторов разные и зависят от местоположения объекта исследований.

Однако в полевых исследованиях очень сложно выявить роль одного фактора, как биотического (конкуренции, аллелопатии, плодородия почв), так и абиотического (тепло, влаги, света, засоления, кислотности почв), тем более, что все факторы функционально связаны друг с другом.

Известно, что нередко ограничение одного из них сопряжено с изменением другого. Так, холодность почв с многолетней мерзлотой способствует их переувлажнению и, как следствие, анаэробиозису. В результате резко ухудшаются условия усвоения корнями растений элементов питания. В Приморье, как правило, высокая инсоляция южных склонов сопровождается высокой сухостью субстрата и формированием ксерофитных криволесий.

Исследовать роль конкретного фактора можно при постановке эксперимента в полевых или лабораторных условиях.

Экспериментальные методы отличаются от полевых тем, что организмы искусственно ставятся в условия, при которых можно дозировать размер изучаемого фактора, следовательно, можно точнее, чем при обычном наблюдении, оценить его влияние. При этом выводы, полученные в лаборатории, требуют обязательной проверки в полевых условиях.

В качестве примеров экологических экспериментов можно привести исследования функций лесозащитных полос, изучение осветления насаждений, влияния разных доз удобрений, вносимых под сельскохозяйственные культуры и т.д. Широко известен метод изучения конкурентных взаимоотношений деревьев в лесу путем ограничения определенной площади (площади питания).

Большое значение при проведении экологических исследований имеют химические и физиологические методы, т.к. они позволяют выявить роль разных компонентов экосистем, и в первую очередь, самого главного – фитоценоза, в аккумуляции и превращении вещества и энергии. Химические методы позволяют установить особенности накопления химических элементов в растениях и в целом в сообществах, особенности круговорота питания. С помощью физиологических методов можно в полевых условиях проследить физиологические процессы (фотосинтез и транспирация).

Так как все биосистемы обладают способностью к саморегуляции, т.е. к восстановлению экологического равновесия, а законы их развития имеют причинно-следственную связь, то в экологических исследованиях широкое распространение получили математические методы (математическая статистика, методы теории информации и кибернетики, теории чисел, дифференциальные и интегральные исчисления и др.) и на основе этих методов – моделирование. Моделирование биологических явлений, т.е. воспроизведение в искусственных системах процессов свойственных живой природе, получило широкое распространение в современной экологии.

Модели подразделяются на реальные (аналоговые) и знаковые.

Примеры аналоговых моделей – аппараты искусственного кровообращения, искусственная почка, протезы рук, управляемые биотоками. Аквариумы и океанариумы модели разных водоемов, теплицы – модели экосистем соответствующих природных зон.

Знаковые модели представляют собой отображение оригинала с помощью математических выражений или подробного описания и, в свою очередь, делятся на концептуальные и математические. Первые могут быть представлены текстом, схемами, научными таблицами, графиками и т.д., а вторые – формулами, уравнениями. Математические модели, особенно при наличии количественных характеристик, являются более эффективным методом изучения экосистем. Математические символы позволяют сжато описать сложные экосистемы, а уравнения дают возможность формально выразить взаимодействия различных компонентов экосистем.

Пример простейшего дифференциального уравнения, описывающего рост популяции какого-либо вида на какой-нибудь стадии ее развития (Радкевич, 1997):

dx/dt=rx,

где x – плотность популяции в момент времени t, r – скорость роста в период времени, соответствующий rt. Решением этого уравнения является функция

x=x0ert

Процесс перевода физических или биологических представлений о любой экосистеме в математические формулы и операции над ними называются системным анализом. В современной экологии реальные и знаковые модели используются параллельно, дополняя друг друга. При отсутствии реальных моделей математический подход получается отвлеченным, а при исключении математического подхода бывает трудно уловить смысл реальной модели.

Экологический мониторинг – один из главных методов изучения динамики экосистем (биогеоценозов), происходящей под воздействием естественных и антропогенных факторов. Под мониторингом понимается специальное длительное слежение за состоянием одних и тех же экосистем. Подобные исследования сопряжены с большими время- и трудозатратами, так как предусматривают детальное описание и изучение всех компонентов, составляющих биогеоценоз, и потому возможны лишь при организации стационарных работ с закладкой как временных, так и постоянных пробных площадей. Мониторинг растительного покрова должен проводиться на разных уровнях в соответствии с хорологической (пространственной) дифференциацией биосферных систем. С помощью одной пробной площади размером 1 га проводить мониторинг растительного покрова невозможно. Для равнинного геоботанического района (заповедника) необходимо заложить не менее 10-12 постоянных пробных площадей размером 1 га, а для горного района - не менее 30-40. Именно к такому выводу пришло большинство исследователей, работавших в разных регионах северной Евразии.

К сожалению, изучение процессов, а именно изучение трансформации сложных многокомпонентных систем, какими являются экосистемы и растительные сообщества – это следующий этап развития экологии. Пока что наибольшее развитие получил мониторинг растительного покрова (ботанический), но и он еще находится в начальной стадии.

3. Изучение фитоценозов

Во время летних практик очень важно, чтобы ученики получили объективное представление о природе своей малой родины, своего края, научились распознавать растения и понимать хотя бы самые общие процессы, которые происходят в сообществах. Поэтому желательно вместе с ними наблюдать и изучать природные явления, а для этого учителю необходимо самому овладеть хотя бы основными экологическими методами, знать, как и с чего следует начинать исследования.

Изучение растительного покрова – самая важная часть экологических исследований. По выражения В.М. Урусова, растения «не бегают по территории, как зайцы», их легко измерять, за ними легко наблюдать. Видовой состав, физиономический облик, структура, жизненное состояние растений и продуктивность растительных сообществ отражают все особенности условий обитания (климат, почвы, положение в рельефе), историю развития и связи между элементами сообщества, как в пространстве, так и во времени. С изучения растительности и начинается изучение экосистем.

Основной классификационной единицей растительного покрова служит ассоциация. Нет на земле двух совершенно одинаковых растительных сообществ, или фитоценозов, которые были бы идентичны, но многие из них настолько похожи между собой, чтобы без колебаний могут быть отнесены к одному типу фитоценоза или одной ассоциации. Согласно определению, разработанному отечественными геоботаниками во главе с В.Н. Сукачевым, ассоциация представляет собой совокупность однородных фитоценозов с одинаковой структурой, одинаковым составом и жизненными формами растений, со сходными взаимоотношениями организмов как друг с другом, так и со средой. Сходные ассоциации (лиственничник разнотравно-вейниковый, Л. хвощово-разнотравный и т.д.) составляются в группы (лиственничники травяные), сходные группы – в формации (лиственничная), последние – в группы формаций (горные лиственничники, долинные лиственничники), затем следуют классы формаций (хвойных лесов) и типы растительности (лесной).

Для получения объективных характеристик и количественных показателей ассоциации в ее самых типичных фитоценозах закладывают пробные площади и на них определяются все характеристики. Поэтому закладке пробных площадей предшествует очень тщательный выбор участков на основе обстоятельного изучения материалов лесоустройства и маршрутного обследования районов исследований.

Минимальный ареал ассоциации – это минимальный размер площади, на которой выявляются все виды (константы) ассоциации; минимальная площадь выявления та, на которой выявляются все особенности изучаемого сообщества. Исходя из этих условий и устанавливается размер пробных площадей.

При закладке пробных площадей обычно соблюдается второе условие, чтобы число особей эдификаторных ценопопуляций на них составляло не менее 200 экземпляров и были представлены все виды растений и все структурные элементы ценоза. Минимальный размер пробных площадей в лесу – 50х50 м2, максимальный – 50-100 м2. Для травяных сообществ размер пробных площадей меньше, чем для лесных (до 100 м2). Для пробных площадей детально описываются местоположение, состояние окружающих территорий, выявляется видовой состав, дается характеристика каждой ценопопуляции, отмечается ее фенологическая фаза. Обязательно изучаются вертикальная и горизонтальная структура сообщества.

Пробные площади могут быть временными и постоянными. На временных пробных площадях проводятся разовые учетные работы и не столь детально, как на постоянных пробных площадях (ППП). Именно последние служат для многолетнего изучения разных процессов и закономерностей развития растительности, т. е. для мониторинговых исследований. Желательно чтобы ППП были заложены во всех редких и в девственных сообществах каждой природной зоны.

При детальном изучении пространственной структуры ППП в натуре разбиваются на квадраты 10х10 м2. На каждом из них выполняется сплошной перечет древостоя и крупного подроста с указанием жизненного состояния особей. Впоследствии выбираются квадраты, наиболее отражающие строй того или иного структурного элемента (парцеллы – в трактовке Н.В. Дылиса, 1974) и по их данным рассчитываются показатели: таксационные – для древостоя (средние диаметр и высота, сумма площадей сечения стволов, разряды высот, запас древесины, относительная полнота, классы бонитета и товарности) и биометрические – для подлесочного яруса.

Древостой. На временных пробных площадях жизненное состояние растений и особенности ярусов (древостоя, подроста, кустарников, трав), описываются глазомерно; замеры диаметров (перечет) у деревьев ведутся с точностью до 4 см, высоты измеряются у 20-30 деревьев. На постоянных пробных площадях каждому дереву присваивается порядковый номер и у диаметр измеряется с точностью до 0,1 см, указывается категория, отражающая жизненное и качественное состояние дерева.

Например, по следующей шкале:

I А – господствуют в первом ярусе, лучшие по развитию, с прямыми ровными, хорошо очищенными от сучьев стволами;

I Б – растут в первом ярусе, хорошего развития, здоровые, но могут иметь незначительные изъяны ствола;

II А – растут в первом и втором ярусах, здоровые, но отстают в росте или, в силу своей молодости, еще не вышли в класс господствующих;

II Б – здоровые, с сильно развитыми кронами, суковатыми стволами;

III А – перестойные, но без признаков усыхания; самые большие;

III Б – фаутные, сомнительной жизнеспособности, усыхающие.

Для более полной информации о развитии древостоя проводится анализ хода роста модельных деревьев главной породы, определяется возраст.

Подрост выше 2 м на пробных площадях учитывается полностью. Он разбивается по группам высот с градацией 0,25 или 0,5 м. Одновременно с перечетом указываются порода и жизненное состояние растущих особей.

очень хорошей жизненности – деревце густооблиствено (густоохвоено), прирост в высоту максимальный для данной группы высот, стволик без изъянов, кора гладкая;

жизнеспособный (благонадежный) – деревце здоровое, нормально развито, но могут быть небольшие изъяны у стволика: смены вершинок, кривизна; прирост побегов снижен, кора гладкая;

сомнительной жизненности – деревце сильно угнетено, прирост по высоте очень слабый или отсутствует, кроны редкие, нередко состоят из 1-2 ветвей; много сухих побегов, частые смены вершинок, кора шершавая;

нежизнеспособный (неблагонадежный) – прироста текущего года нет, живые ветви единичны, вершинки усохшие, кора шершавая, отслаивается.

Для всех пород отбираются модельные деревца – по одному для каждой группы высот. У них определяются возраст и приросты в высоту по годам за последние пять лет, измеряются диаметры стволика на уровне шейки корня и на высоте 1,3 м, высота стволика и диаметр кроны.

Для подлеска (кустарников) определяются видовой состав, состояние и сомкнутость ценопопуляции каждого вида. Он разделяется на редкий (сомкнутость <0,3), средней густоты (0,3-0,5) и густой (сомкнутость >0,5). Для определения биометрических показателей в выделенных градациях у 50 особей всех видов измерялись длина и диаметр побегов на уровне шейки корня. У кустарников подсчитывалось количество побегов в кусте и у всех побегов измерялись диаметр и длина побега.

Подрост ниже 0,25 м, всходы и самосев древесных и кустарниковых пород учитываются по площадкам 2х2 м. Учетные площадки закладываются на пробной площади равномерно по диагонали в верхнем правом (или левом) углу каждой 10-метровой клетки. На этих же площадках учитывается и возобновление лиан. Перечет самосева подроста и кустарников ведется по высоте с точностью до 5 см с указанием жизненности особей.

Напочвенный покров отличается большой неоднородностью структуры, особенно в северных лесах и редколесьях. Как фитоценоз может состоять из нескольких ярусов, так ярус напочвенного покрова – из нескольких подъярусов, образованных растениями разных жизненных форм: кустарничками, мхами, лишайниками, травами.

Травы, в свою очередь, можно разделить на группы: злаки и осоки, мелко- или низкотравье (высота до 15-20 см, разнотравье (травы средних размеров – до 50 см), крупнотравье (выше 50 см) и папоротники. Для каждой пробной площади составляется таблица со списком видов и показателями их численности отдельно для травяно-кустарничкового подъяруса и мохово-лишайникового подъяруса (покрова). Описание напочвенного покрова нередко выполняется одновременно с картированием микрогруппировок. Названия микрогруппировкам, как и всему ценозу, присваиваются по доминирующим видам и (или) группе видов со сходными экологией и жизненной формой. Например, "разнотравно-осоковая" означает, что в группировке высоко обилие смеси из разных трав среднего размера, но обилие осоки выше. Если проективное покрытие трав было ниже 60, но выше 40% – к названию добавлялось "разреженная", если ниже 40% – редкопокровная.

Показатели численности видов и их динамика являются основными в экологических исследованиях. Численность определяется визуально и инструментально, но чаще визуально. Всегда на учетной единице: площади (дм, м2, км2, га,), длины (м, км), объема (м3, 10 дм3), времени (час, сутки) и т.д.

Основные показатели численности видов

Встречаемость (частота встречаемости, коэффициент встречаемости) – это относительное число выборок, в которых встречается вид. Если выборка состоит из 100 учетных площадок, а вид отмечен на 43, то и встречаемость равна 43%. При встречаемости 25%, вид встречается в каждой четвертой площадке учета и он случайный. Высокая встречаемость, если вид отмечен более, чем на 50% уч. пл. Обычно закладывается 50 уч. пл., но не менее 25.

Обилие – это количество особей вида на единице площади или объема. Наиболее часто используются шкалы обилия Друде и Хульта:

 

Шкала обилия Друде

Шкала обилия Хульта (балльная)

soc – очень обильно, сплошь, пр. покр. более 90%

5 – очень обильно

cop1-3 – вид обилен, по величине обилия выделяются 3 степени пр. покр. соответственно: 30-40, 50-60 и 70-80%

4 – обильно

sp – вид обычен, но сплошного покрова не образует, пр. покр. 10-20%

3 – не обильно

sol – вид растет рассеянно, пр. покр. 3-5%

2 – мало

un – вид встречается один раз, пр. покр. <1%

1 – очень мало

Покрытие – процент площади, покрываемой надземными частями растений. Процент площади, занятой основаниями растений – истинное покрытие, верхними частями – проективное. Проективное покрытие – обязательный показатель при изучении напочвенного покрова. При изучении древесно-кустарниковых ярусов синонимом пр. покр. служит сомкнутость –отношение площади проекций крон к площади занимаемого участка; в отличие от пр. покр. сомкнутость измеряется в долях от единицы. Истинное пр. покр. для древостоя – сумма площадей поперечного сечения стволов и полнота, определяется расчетным путем по данным перечета древостоя.

Биомасса – общие запасы органического вещества, накопленные к моменту учета. Выражаются в массе абсолютно-сухого, воздушно-сухого или сырого вещества. Биомасса растений – растительная масса, фитомасса; биомасса животных – зоомасса. Биомасса, ее фракционная структура, скорость накопления (продукция – прирост биомассы за определенный промежуток времени) являются важнейшими – интегральными, показателями жизнедеятельности организмов. Они дают возможность оценить роль каждого фактора и популяции в формировании биогеоценоза, оценить запасы биологических и пищевых ресурсов, сделать кратко- и долгосрочные прогнозы развития сообществ, предсказать пути их трансформации и разработать мероприятия по охране и рациональному использованию любого из ресурсов. Именно поэтому изучение биологической продуктивности и было положено в основу упомянутой выше Международной биологической программы (МБП).

При экологических исследованиях очень важна и хозяйственная оценка исследуемых территорий: запасы древесины, лекарственного сырья, пищевых и промысловых ресурсов.

В целом же часто необходимо сочетание всех перечисленных методов.

4. Изучение зооценозов

Цели и задачи экологических исследований фито- и зооценозов сходны – изучение водного и газового обмена, продуктивности, закономерностей биохимических (физиологических) процессов, темпов роста и размножения, др. показателей. Так же, как жизнь растений, жизнь животных зависит от абиотических факторов среды – тепла, влаги, света, состава воздуха и др. факторов. Но изучение животных имеет свои характерные особенности. Одна из самых характерных – изучение питания: состава и количества пищи в разное время года и разные периоды жизни животного. Большое внимание уделяется вопросам размножения (фенология размножения, половая и возрастная структура популяций, зависимость размножения от пищевых ресурсов и погодных условий) – этим определяется продолжение рода и сохранность популяции как вида. Изучение поведения животных позволяет изучить способность популяции приспосабливаться к изменению условий среды, с поведением связано состояние популяции, ее реакция на всевозможные "раздражители". Немаловажно изучение образа жизни и сезонных биоциклов для познания закономерностей миграции и размещения популяций. С этой целью проводятся радиомечение, кольцевание, маркировка краской, клеймение животных.

5. Ботанический мониторинг. Состояние проблемы, основные понятия и элементы теории

Метод ботанического (экологического) мониторинга и метод трансформации пространственных рядов во временные – методы изучения динамики экосистем.

Ботанический мониторинг следует рассматривать как основной метод изучения динамики растительного покрова, его флоры и растительности, но до сих пор основным методом изучения динамики растительного покрова является метод трансформации пространственных рядов растительного покрова во временные. В этом случае подбираются сообщества, нарушенные в разное время и находящиеся на разной стадии восстановления. Главное условие подбора объектов исследований – сходство местообитаний, а, следовательно, и типологическое сходство их ненарушенных сообществ. Подобранные сообщества в совокупности рассматриваются как возможный ряд последовательных смен, и он интерпретируется как временной ряд изменения растительного покрова в одном месте, т.е. на одной пробной площади.

а) Почему широкое распространение получил метод трансформации пространственных рядов во временные, а не метод ботанического (экологического) мониторинга? Дело в том, что в период становления ботаники, и геоботаники в том числе, преобладал описательный и классификационный этап развития. По сравнению с такими науками, как физика и химия, он несколько затянулся. На выделение объектов и явлений, их распознавание, детальное описание и классификацию в геоботанике ушло около 200 лет. Это неудивительно, так как ботаникам приходится иметь дело с таким разнообразием объектов, явлений и процессов, которое на несколько порядков выше, чем разнообразие в точных науках. Да и сегодня еще немало «белых» флористических и геоботанических пятен, требующих простейшей инвентаризации. Особенно в Сибири и на Дальнем Востоке, где описательно-классификационный этап в самом разгаре.

Однако назрела пора перехода ко второму этапу - изучению динамики флоры и растительности, так как нерешенность именно этих проблем тормозит развитие общей и прикладной экологии. Но поскольку многолетний мониторинг, как основной метод изучения динамики, требует длительного периода наблюдений, его в какой-то мере и заменяет "метод трансформации". Последний, несомненно, сходен с методом длительного мониторинга, но в отличие от него, позволяет изучить только демутационные (восстановительные) смены растительного покрова и не позволяет установить необратимые изменения фитоценозов нет тому свидетелей и свидетельств.

б) Почему растительность, выводимая из равновесия периодическими изменениями климата, не может восстановиться полностью, т.е. до первоначального состояния? Мониторинг растительных сообществ – это мониторинг одного из компонентов локальной экосистемы. Он должен учитывать хроноинтервал исследуемой экосистемы. Хроноинтервал – время, необходимое для возвращения данной экосистемы в равновесное состояние после отклонения от него.

Для большинства лесных экосистем ранга биогеоценоза хроноинтервал составляет 150-200 лет, для степных экосистем – 50-100 лет, для луговых – 20-30 лет. Но для экосистемы целого геоботанического района (элементарная биосферная система) хроноинтервал имеет размер 1500-2000 лет. Для биосферной системы еще более высокого ранга (физико-географической области) хроноинтервал составляет время порядка 10000-20000 лет. Считается, что хроноинтервал биосферы в целом – свыше 100000 лет (Миркин, 1985; Галанин, 1993, 2000).

Исследования последних 30-40 лет показали, что для изменений климата характерна цикличность. При этом существует не один, а несколько циклов с разными периодами, где короткие циклы накладываются на более длительные.

Хорошо доказан и обоснован 11-ти летний цикл колебаний климата, который связывают с колебаниями солнечной активности. Многие авторы указывают на наличие в природе 90-100 летнего цикла. Некоторые исследователи считают, что еще существует 600-700 летний цикл, отражающийся в биосфере, в том числе и в растительном покрове.

Если мы сравним длительность этих циклов с хроноинтервалами экосистем разного ранга, то увидим, что эти временные периоды не совпадают. Следовательно, растительность, выводимая из равновесия периодическими изменениями климата, не может восстановиться полностью. Пока она восстанавливается, наступает новый цикл, равновесие сдвигается, и снова начинается сукцессия (смена).

Многие геоботаники с выводами о перманентно неравновесном состоянии растительности не согласятся – настолько мы уверовали в догмат о климаксовой растительности. Доказать, или опровергнуть вывод о невозможности климаксовой (и коренной тоже) растительности в современную эпоху можно только путем длительного мониторинга растительного покрова на постоянных пробных площадях. Но вот этой-то информации в современной геоботанике как раз и не хватает.

Основные причины слабой организации мониторинга в естественных экосистемах заповедников и других территорий

а) Почему не хватает информации для анализа динамики экосистем? Отсутствуют переописания (ревизии) постоянных пробных площадей. Геоботаниками за полтораста лет были составлены сотни тысяч геоботанических описаний, но почти все они были разовыми и не предполагали ревизии – повтора через определенные промежутки времени. Для типизации и классификации растительности этих разовых описаний было достаточно, на этом материале писались сводки, диссертации, создавались теории, в том числе и теории о динамике растительности. Закладывать и описывать постоянные пробные площади пытались на стационарах, в заповедниках. Их маркировали на местности, заводили паспорта, даже 2-3 раза переописывали. Но старел исследователь, заложивший постоянные пробные площади, уезжал, умирал, начиналась война, приходили новые сотрудники с иными интересами, и постоянные пробные площади забрасывались, терялись. Когда через 30-40 лет в этот район приходил сотрудник, заинтересованный в мониторинге растительности, то он не мог отыскать заброшенные площади и был вынужден закладывать новые.

2. Недостаточная квалификация лесоустроителей. Много постоянных пробных площадей закладывалось при лесоустройствах. Древостои на некоторые из них характеризовались весьма подробно: деревья нумеровались, измерялись, наносились на план, учитывались возобновление и подрост, но остальные ярусы растительности характеризовались поверхностно, небрежно. Флора на этих площадях выявлялась едва на 10-20%, так как специалистов флористов в таких экспедициях не было. Да и трудно себе представить, чтобы в лесоустроительной экспедиции, базирующейся в Минске, были флористы, ориентирующиеся в биоразнообразии растительного покрова и Белоруссии, и Северного Кавказа, и Южной Сибири, и Дальнего Востока. А работать сотрудникам каждой лесоустроительной экспедиции приходилось во всех районах Советского Союза. Завышенные нормативы для сотрудников лесоустроительных экспедиций и слабый контроль их работы нередко приводили к откровенной халтуре.

3. Работе по закладке, описанию и периодической ревизии постоянных пробных площадей не придается особого значения. Даже в заповедниках она не является обязательной и ведется от случая к случаю; слабо контролируется как руководством заповедников, так и органами, контролирующими работу заповедников. Отсутствует единая утвержденная и обязательная методика. Штаты научных отделов даже в биосферных заповедниках не имеют жесткого перечня обязательных специальностей. В ряде заповедников специалистов геоботаников и лесоведов в штате вообще нет. Директора заповедников и их заместители не несут никакой ответственности за потерю постоянных пробных площадей, за то, что в их заповедниках не ведется мониторинг растительности. Хотя именно мониторинг растительного и животного мира должен быть главной научной задачей заповедников.

То, что до сих пор считается главной задачей научных отделов заповедников – проведение исследований в области систематики растений и животных, физиологии, биохимии – это задача академической науки. Инвентаризация флоры, лихенобиоты и микобиоты для большинства заповедников - непосильная задача, собственными научными силами они ее выполнить не могут. Неоправданно много внимания ботаниками в заповедниках уделяется изучению редких видов в ущерб исследованиям в области мониторинга флоры и растительности на постоянных пробных площадях. Нередко научные сотрудники заповедников пытаются описывать новые для науки виды, выделять биологически активные вещества. Для этого заповедники должны приглашать ученых из академических институтов и университетов. Но вести мониторинг в рамках обязательной программы-минимум заповедники должны собственными силами.

Главные задачи изучения изменений растительного покрова

В условиях колебательных изменений климата в растительном покрове выработался специальный механизм, который позволяет экосистеме быстро перестраиваться, изменяя состав видов доминантов. В видовом составе растительного сообщества уживаются виды самого разного склада, имеющие разные пределы экологической толерантности. В одной части климатического цикла на данном участке доминируют одни виды, в другой части активизируются другие виды, а бывшие доминанты переходят в разряд сопутствующих.

Такими парами в лесах среднего Сихотэ-Алиня являются дуб монгольский и лиственница даурская, кедр корейский и ель аянская, а в лесах Хэнтей-Чикойского нагорья в Даурии – кедр корейский и лиственница, сосна обыкновенная и лиственница.

При анализе изменений растительного покрова исследователь всегда должен задаваться вопросом о направленности этих изменений. В каком случае экологическая система движется к состоянию равновесия со средой обитания, а в каком удаляется от него? Как исследователь может определить направленность изменения экосистемы и растительности как ее части? Ответить на этот вопрос можно только анализируя динамику биоразнообразия растительного сообщества. Если биоразнообразие экосистемы в ходе ее изменения снижается, следовательно, экосистема деградирует. Напротив, если биоразнообразие экосистемы увеличивается – система развивается.

Таким образом, важной для мониторинга растительности является оценка флористического биоразнообразия растительных сообществ. Проблема эта не так проста, как это представляется сегодня большинству исследователей. Чаще всего биоразнообразие отождествляется с числом видов, числом родов и семейств. При этом вряд ли кто скажет, когда разнообразие выше, когда в сообществе 20 видов одного рода, или когда в нем 5 видов, но из 2 разных родов. А когда в сообществе только 2 вида, но из 2 разных семейств, это больше, или меньше?

Проблема может быть осложнена, если мы станем рассматривать не таксоны, а экобиоморфы растений. Порой таксономически близкие виды растений принадлежат к совершенно разным экобиоморфам и, наоборот, таксономически несходные виды растений имеют сходные экобиморфы. Примеров этого можно привести множество. Геоботаники знают, что биоморфологическое разнообразие чаще всего не совпадает с таксономическим. Но именно биоморфологическое разнообразие является более важным с точки зрения функциональной структуры растительного покрова. Классификация растительности по доминантным видам и экобиоморфам растений никак не может быть заменена флористической классификацией растительности. Поголовное увлечение только флористической классификацией, несомненно, пагубно скажется на развитии теории мониторинга растительности. Описывая растительность постоянных пробных площадей, следует очень скрупулезно описывать и учитывать вертикальную надземную и подземную ярусность, фенологическую неоднородность, способы возобновления ценопопуляций растений, способы перенесения растениями неблагоприятных условий и другие биоморфологические особенности.

При мониторинге растительности следует выявлять ведущие факторы, вызывающие периодические изменения конкретных растительных сообществ.

Например, при потеплении и явной аридизации климата в Даурии за последние 30 лет, в некоторых экосистемах верхнего лесного пояса в поймах рек влажность почвы резко возросла за счет более интенсивной оттайки многолетней мерзлоты в гольцовом и подгольцовом поясах. В альпийском поясе в результате такого потепления многие относительно теплолюбивые виды стали деградировать, так как снегу стало выпадать меньше, и снеговое укрытие в местах перегибов склонов, где перезимовывали эти растения, стало незначительным. Стали гибнуть кусты кедрового стланика, сокращаться ценопопуляции пихты сибирской.

На многие поставленные вопросы могут дать ответ регулярные фенологические наблюдения на одних тех же участках за одними и теми же объектами. Именно они на основе постоянно фиксируемых состояний растений позволяют уловить момент изменения климата или перехода экосистемы из одной сукцессионной стадии в другую.

К проведениию мониторинговых наблюдений следует шире привлекать студентов и школьников, после получения ими под руководством преподавателей определенных навыков. Это позволит быстро создать базу данных для организации регионального мониторинга на достаточно большой территории, и послужит хорошей основой для расширения кругозора и повышения экологической грамотности у учащейся молодежи.

страница 1


скачать

Другие похожие работы:








Документы

архив: 1 стр.