Обработка и передача изображений fast 3d object model reconstruction algorithm by stereo pair
6. Сопоставление сегментов стенок
Каждый контур X серии УЗИ разбивается на три сегмента
























Рис. 2. a) сопоставление групп точек, b) сопоставление с равномерным разбиением, c) сопоставление контуров, d) сопоставление сегментов, e) итоговое сопоставление.
Заключение
Полученные вектора движения точек стенки желудочка достоверно достоверны. Точки финального контура лежат на M, т.е. они имеют нормальные составляющие скоростей, равные нормальным скоростям на МРТ снимках и оператор проецирования на М не изменил изначальных тангенциальных скоростей контура Х, полученных из видеоданных УЗИ.
Работа выполнена при поддержке ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009–2013 годы.
Литература
T. Wu, J.P. Felmlee, J.F. Greenleaf, S.J. Riederer, R.L. Ehman "MR imaging of shear waves generated by focused ultrasound" // Magn. Res. in Med., v.43, pp.111–115, 2000.
D.A. Feinberg, M. Günther "Simultaneous MR and ultrasound imaging: towards US-navigated MRI" // Proc. of 11th Intern. Soc. Magn. Res. in Medicine, p.381, 2003.
M. Günther, D.A. Feinberg "Ultrasound-guided MRI: preliminary results using a motion phantom" // Magnetic Resonance in Medicine, vol.52(1), pp.27–32, 2004.
D. Comaniciu, X.S. Zhou, S. Krishnan "Robust real-time myocardial border tracking for echocardiography: An information fusion approach" // Med. Imaging, IEEE Trans., v.23, pp.849–860, 2004.
E. Trucco, A. Verri "Introductory Techniques for 3-D Computer Vision" // Prentice Hall PTR, p.195, 1998.
T. Cootes, C. Taylor "Statistical Models of Appearance for Computer Vision" // Technical report, Imaging Science and Biomedical Engineering, Univ. of Manchester, p.106, 2004.
LEFT VENTRICLE BORDER TRACKING USING MRI AND US VIDEODATA
Yatchenko A.1, Krylov A.1, Gavrilov A.2, Arkhipov I.3
1Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics, Laboratory of Mathematical Methods of Image Processing,
2 Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear Physics,
3National Research Centre of Surgery, Moscow, Russia.
The ability of Magnetic Resonance Imaging (MRI) and Ultrasound imaging (US) allows cardiologists to acquire high quality images of cardiac anatomy that assist diagnosis. Both modalities have drawbacks and advantages. In the problem of ventricular border tracking MRI shows a clear and conspicuous ventricular border comparing with US. At the same time US in this problem is usually characterized by a higher resolution and frame rate.
An iterative method of Left Ventricular (LV) border tracking calculation using joint MRI and US information has been developed. It includes the modalities data synchronization and data fusion. Final normal component of border point velocities is taken from MRI data and the tangent velocity component is obtained from US.
The proposed algorithm consists of the following stages:
1) Ventricle border detecting for MRI and US.
2) Tangent velocities enhancing for US borders.
3) Modalities phases synchronization.
4) Modalities data fusion.
For detecting LV border doctor manually marks ventricular borders for a chosen subset of frames (key frames) and then the Lucas-Kanade scale-space method is used to track contour [1], [2]. For enhancing tangent velocities US texture information of ventricular borders is used. Initially, US and MRI series may not be synchronized in time, so modalities phase synchronization based on ventricular volume information is applied. Then a correspondence of MRI and US border segments is found using a points and contours matching algorithms [3]. US contour points with LV border tangent motion information projected onto corresponded segments of MRI border contour for achieving a result.
Experimental part of the work was performed in Research Center of Surgery of RAMS. The work was partially supported by federal target program ”Scientific and scientific-pedagogical personnel of innovative Russia in 2009-2013”.
Literature
D. Comaniciu, X.S. Zhou, S. Krishnan "Robust real-time myocardial border tracking for echocardiography: An information fusion approach" // Med. Imaging, IEEE Trans., v.23, pp.849–860, 2004.
E. Trucco, A. Verri "Introductory Techniques for 3-D Computer Vision" // Prentice Hall PTR, p.195, 1998.
T. Cootes, C. Taylor "Statistical Models of Appearance for Computer Vision" // Technical report, Imaging Science and Biomedical Engineering, Univ. of Manchester, p.106, 2004.
* This work was supported by RFBR grant (project 11-02-00704)
Цифровая обработка сигналов и ее применение
Digital signal processing and its applications
страница 1 ... страница 2страница 3страница 4
скачать
Другие похожие работы: