скачать doc
http://elmech.mpei.ac.ru/EM/EM/EM_cont_4.htm
"Электрические машины"
Глава 4. Синхронные машины
| 4-1. Общие сведения | ||||||||||||||||||||||||
| 4-2. Холостой ход | ||||||||||||||||||||||||
| 4-3. Трехфазный синхронный генератор. Симметричная нагрузка
| ||||||||||||||||||||||||
| 4-4. Несимметричная нагрузка трехфазного генератора | ||||||||||||||||||||||||
| 4-5. Однофазный синхронный генератор | ||||||||||||||||||||||||
| 4-6. Несимметричные короткие замыкания | ||||||||||||||||||||||||
| 4-7. Параллельная работа генераторов
| ||||||||||||||||||||||||
| 4-8. Синхронный двигатель | ||||||||||||||||||||||||
| 4-9. Распределение активной и реактивной мощностей между параллельно работающими машинами | ||||||||||||||||||||||||
| 4-10. Реактивная машина | ||||||||||||||||||||||||
| 4-11. Внезапное короткое замыкание синхронной машины | ||||||||||||||||||||||||
| 4-12. Качания синхронной машины | ||||||||||||||||||||||||
| 4-13. Потери и коэффициент полезного действия | ||||||||||||||||||||||||
| 4-14. Нагревание и охлаждение | ||||||||||||||||||||||||
| 4-15. Синхронные машины заводов Советского Союза |
Глава 4. Синхронные машины | |
4-1. Общие сведения | Часть 1 |
Генераторы переменного тока, работающие на электрических станциях, в большинстве случаев являются синхронными машинами. Эти машины применяются также в качестве двигателей. Наибольшее распространение получили трехфазные генераторы и двигатели. Синхронная машина в обычном исполнении состоит из неподвижной части — статора, в пазах которого помещается трехфазная обмотка, и вращающейся части — ротора с электромагнитами, к обмотке которых подводится постоянный ток при помощи контактных колец и наложенных на них щеток (рис. 4-1). Рис. 4-1. Явнополюсная синхронная машина (2p = 8). Статор синхронной машины ничем не отличается от статора асинхронной машины. Ротор её выполняется или явнополюсным (с выступающими полюсами, рис. 4-1), или неявнополюсным (цилиндрический ротор, рис. 4-2). Рис. 4-2. Неявнополюсная синхронная машина (2p = 2). В зависимости от рода первичного двигателя, которым приводится во вращение синхронный генератор, применяются названия: паротурбинный генератор или сокращенно турбогенератор (первичный двигатель — паровая турбина), гидротурбинный генератор или сокращенно гидрогенератор (первичный двигатель — гидравлическая турбина) и дизель-генератор (первичный двигатель — дизель). Турбогенераторы — быстроходные неявнополюсные машины (рис. 4-2), выполняемые в настоящее время, как правило, с двумя полюсами. Турбогенератор вместе с паровой турбиной, с которой он механически соединяется называется турбоагрегатом (рис. 4-3). Рис. 4-3. Общий вид турбоагрегата. 1-турбогенератор; 2 —паровая турбина. 3 — возбудитель. Гидрогенераторы — в обычных случаях тихоходные явнополюсные машины (рис. 4-1), выполняемые с большим числом полюсов и с вертикальным валом (рис. 4-4). Рис. 4-4. Общий вид гидроагрегата. Продолжение | Вверх 4-1. Часть 1 Часть 2 Часть 3 4-2. 4-3. 4-4. 4-5. 4-6. 4-7. 4-8. 4-9. 4-10. 4-11. 4-12. 4-13. 4-14. 4-15. Глава 5 |
Глава 4. Синхронные машины | |
4-1. Общие сведения | Часть 2 |
Дизель-генераторы представляют собой в большинстве случаев машины с горизонтальным валом. Синхронные машины небольшой мощности иногда выполняются с неподвижными электромагнитами, помещенными на статоре, и обмоткой переменного тока, заложенной в пазы ротора, изготовленного из листовой электротехнической стали; в этом случае обмотка переменного тока соединяется с внешней цепью через контактные кольца и щетки (рис. 4-5). Рис. 4-5. Синхронная машина с неподвижными электромагнитами. Ту часть синхронной машины, в обмотке которой наводится э.д.с., принято называть якорем. Электромагниты (полюсы) вместе с замыкающим их ярмом образуют полюсную систему; ее иногда называют индуктором. В синхронных машинах обычной конструкции статор служит якорем, ротор — полюсной системой. Основные преимущества конструкции с вращающимися полюсами заключаются в том, что здесь возможно осуществить более надежную изоляцию обмотки неподвижного якоря, более просто, без скользящих контактов соединить ее с сетью переменного тока. Указанные преимущества особенно существенны для синхронных машин на большие мощности и высокие напряжения. Устройство скользящих контактов для подвода постоянного тока в обмотке электромагнитов, называемой обмоткой возбуждения, не представляет затруднений, так как мощность, подводимая к этой обмотке, составляет небольшую долю [(0,3 2)%] номинальной мощности машины. Кроме того, нужно отметить, что в современных мощных турбогенераторах, работающих с частотой вращения 3000 об/мин, окружная частота ротора достигает 180 185 м/сек; при такой частоте не представлялось бы возможным выполнить вращающийся якорь, собранный из тонких листов, механически достаточно прочным. Ротор современного турбогенератора выполняется из цельной стальной поковки (рис. 4-6), причем берется сталь весьма высокого качества. Рис. 4-6. Общий вид неявнополюсного ротора турбогенератора. По бокам ротора расположены вентиляторы. Катушки обмотки возбуждения закладываются в пазы, выфрезерованные на внешней поверхности ротора, и закрепляются в пазах прочными металлическими клиньями. Лобовые части обмотки возбуждения закрываются кольцевыми бандажами, выполненными из особо прочной стали. Ток для питания обмотки возбуждения синхронная машина получает обычно от небольшого генератора постоянного тока, помешенного на общем валу с ней или механически с ней соединенного. Такой генератор называется возбудителем. В случае мощного турбогенератора вал возбудителя с валом турбо генератора соединяется при помощи полуэластичной муфты. Схема соединений возбудителя с обмоткой возбуждения синхронной машины показана на рис. 4-7. Рис. 4-7. Схема возбуждения синхронной машины. В качестве возбудителя в большинстве случаев служит генератор постоянного тока с параллельным возбуждением (см. § 5-9,в). В последние годы для получения постоянного тока, необходимого для возбуждения синхронной машины, используются также различные выпрямители — ртутные, полупроводниковые и механические. Продолжение | Вверх 4-1. Часть 1 Часть 2 Часть 3 4-2. 4-3. 4-4. 4-5. 4-6. 4-7. 4-8. 4-9. 4-10. 4-11. 4-12. 4-13. 4-14. 4-15. Глава 5 |
Глава 4. Синхронные машины | |
4-1. Общие сведения | Часть 3 |
Частота тока, наведенного в обмотке якоря, определяется частотой вращения п, об/мин, и числом пар полюсов р ротора: Гц. Таким образом, для получения стандартной частоты f = 50 Гц нужно, например, при 2р = 2 иметь частоту вращения п = 3000 об/мин (с такой частотой работают почти все современные турбогенераторы), при 2р = 72 п = = 83,3 об/мин (с такой частотой работают днепровские гидрогенераторы). Синхронные двигатели, как правило, выполняются в виде явнополюсных машин обычно на мощности от 100 кВт и выше и на самые различные частоты вращения. Они обладают рядом преимуществ по сравнению с асинхронными двигателями, особенно при большой мощности и низкой частоте вращения, так как могут работать с соs φ = 1 или с опережающим током, улучшая в последнем случае соs φ = 1 всей электроустановки. Наряду с синхронными генераторами и двигателями применяются также синхронные компенсаторы. Они представляют собой синхронные двигатели, работающие вхолостую (без нагрузки на валу) и позволяющие в широких пределах изменять потребляемый ими реактивный ток. Последнее достигается, как будет показано, путем изменения тока возбуждения синхронных компенсаторов, которые в большинстве случаев работают, потребляя опережающий реактивный ток, т. е. как конденсаторы. Они служат для компенсации сдвига фаз тока и напряжения (для улучшения соsφ) или для регулирования напряжения, например в конце линии электропередачи. Режим работы синхронной машины, для которого она предназначена, характеризуется указанными на ее щитке номинальными величинами. На щитке синхронной машины указываются: 1) для какого режима работы машина предназначается (генератор, двигатель или компенсатор); 2) мощность (для генератора — кажущаяся мощность в В·А или кВ·А, а также — активная мощность в Вт или кВт; для двигателя — мощность на валу в Вт или кВт; для компенсатора— реактивная мощность при опережающем токе в В·А или кВ·А); 3) линейный ток в А; 4) линейное напряжение в В или кВ; 5) соsφ; 6) число фаз; 7) соединение обмотки статора (звезда или треугольник); 8) частота тока в Гц; 9) частота вращения ротора в об/мин; 10) напряжение возбуждения; 11) наибольший допустимый ток возбуждения в А (за номинальный ток возбуждения принимается ток, соответствующий номинальному режиму работы). Следует отметить, что если для трансформатора допустимая нагрузка вполне определяется кажущейся мощностью в кВ·А, то для синхронного генератора отдаваемая им мощность в киловольт-амперах не вполне определяет его допустимую нагрузку. Необходимо указать также допустимый соsφ нагрузки генератора при отстающем токе. Последнее объясняется тем, что при работе генератора с отстающим током размагничивающее действие этого тока на основное поле будет тем больше, чем ниже соsφ, а потому, чем ниже соsφ, тем больший ток возбуждения требуется для поддержания на зажимах генератора номинального напряжения. Мы вначале будем рассматривать работу синхронной машины в режиме генератора. При этом будем иметь в виду, что синхронная машина (как любая другая электрическая машина) обратима и что основные электромагнитные процессы в ней одинаковы независимо от того, работает ли она в режиме генератора или двигателя. Различие между тем и другим режимами заключается в том, что в генераторе сдвиг между э.д.с. обмотки якоря и ее током меньше 90°, а в двигателе тот же сдвиг больше 90°. Вследствие этого электромагнитный момент, действующий на ротор, в генераторе направлен против вращения, а в двигателе в сторону вращения. Дальше | Вверх 4-1. Часть 1 Часть 2 Часть 3 4-2. 4-3. 4-4. 4-5. 4-6. 4-7. 4-8. 4-9. 4-10. 4-11. 4-12. 4-13. 4-14. 4-15. Глава 5 |
Глава 4. Синхронные машины | |
4-2. Холостой ход | Часть 1 |
Под холостым ходом генератора понимается такой режим его работы, при котором ток в обмотке якоря (статора) равен нулю. Следовательно, магнитное поле в синхронном генераторе при холостом ходе создается только н.с. обмотки возбуждения. Мы можем принять, что оно состоит из двух полей: основного поля, магнитные линии которого проходят через воздушный зазор и сцепляются с обмоткой статора, и поля рассеяния полюсов, магнитные линии которого сцепляются только с обмоткой возбуждения. Основному полю соответствует поток в воздушном зазоре Ф, который при вращении полюсов будет наводить в обмотке якоря э.д.с. Важно, особенно для машин большой мощности, чтобы кривая этой э.д.с. была возможно ближе к синусоиде. По ГОСТ 183-55 проверка синусоидальности кривой делается для линейного напряжения при холостом ходе и при рабочем соединении обмотки якоря. Критерием для оценки кривой напряжения служит коэффициент искажения синусоидальности кривой, под которым понимается выраженное в процентах отношение корня квадратного из суммы квадратов амплитуд трех наибольших. гармонических составляющих данной периодической кривой к амплитуде ее основной гармонической. При номинальном напряжении он не должен превышать 5% для генераторов мощностью свыше 1000 кВ·А и 10% для генераторов мощностью от 10 до 1000 кВ·А. В отдельных специальных случаях требования в отношении приближения кривой напряжения к синусоидальной могут быть еще более повышены согласно особым условиям, установленным между заказчиком и поставщиком машины. Для получения кривой э.д.с., близкой к синусоиде, прежде всего необходимо, чтобы кривая поля машины была по возможности синусоидальной. В явнополюсной машине, как указывалось, этого добиваются, придавая надлежащую форму очертанию полюсного наконечника (той части полюса, которая обращена к якорю). В неявнополюсных машинах на роторе выбирается такое соотношение между частью его окружности, не имеющей пазов, и частью окружности с пазами, чтобы в кривой поля снизились амплитуды наиболее резко выраженных высших гармоник. Кроме того, обмотка якоря выполняется с укороченным шагом, что в значительной степени способствует улучшению формы кривой наведенной э.д.с. (см. § 3-3,е). В неявнополюсных машинах (турбогенераторы) тому же самому способствует выбор большого числа пазов на полюс и фазу (q = 6 12). В тихоходных явнополюсных машинах (например, гидрогенераторы с вертикальным валом) при большом числе полюсов полюсное деление τ получается недостаточным для размещения на нем большого числа пазов, а потому приходится для таких машин часто брать q < 3. В этом случае при открытых пазах на якоре и при q, равном целому числу, в кривой э.д.с. фазы могут иметь место так называемые зубцовые гармоники с относительно большими амплитудами. Они в основном возни кают из-за поперечных колебаний поля в воздушном зазоре, обусловленных зубчатостью якоря. Такие колебания поля вправо и влево относительно оси полюсов (рис. 4-8) происходят с частотой , так как при перемещении ротора на одно пазовое деление якоря tс получается полный период колебания. Рис. 4-8. Картина поперечных колебаний поля в воздушном зазоре. Соответственно этим колебаниям поля будет изменяться потокосцепление фазы, и, следовательно, в ней будет наводиться э.д.с той же частоты fг (кроме э.д.с. от первой и высших гармоник основного поля). Поэтому кривая э.д.с. получает вид, представленный на рис. 4-9. Рис. 4-9. Осциллограмма э.д.с. синхронной машины при наличии зубцовых гармоник Продолжение | Вверх 4-1. 4-2. Часть 1 Часть 2 4-3. 4-4. 4-5. 4-6. 4-7. 4-8. 4-9. 4-10. 4-11. 4-12. 4-13. 4-14. 4-15. Глава 5 |
Глава 4. Синхронные машины | |
4-2. Холостой ход | Часть 2 |
Зубцовые гармоники в кривой э.д.с. больших машин, особенно в тех случаях, когда они работают на длинные линии электропередачи, должны быть сведены по возможности до ничтожных значений. Они нежелательны потому, что могут вызвать перенапряжения резонансного характера и создать мешающие шумы в линиях связи, расположенных вблизи и вдоль линий электропередачи. Амплитуды зубцовых гармоник не изменяются при укорочении шага, так как укорочение шага мы можем сделать только на целое число пазовых делений Поэтому приходится применять другие способы их уменьшения Достаточно эффективным способом, главным образом и применяемым в настоящее время для мощных явнополюсных машин, является выполнение обмотки с дробным числом пазов на полюс и фазу. В этом случае катушечные группы, составляющие фазу обмотки, состоят из различных чисел катушек; поэтому зубцовые гармоники э.д.с., наведенные в них, оказываются сдвинутыми по фазе на большой угол, близкий к 180o, что и приводит к уменьшению их амплитуды. Практически мы можем считать, что изменение во времени потокосцеплений обмотки статора получается близким к синусоидальному. Поэтому мы можем поток Ф и наведенную им э.д.с., так же как для трансформатора, изобразить временными векторами. При наличии на статоре трехфазной обмотки в ее фазах будут наводиться э.д.с., сдвинутые по фазе на 120°. Значение фазной э.д.с. может быть рассчитано по такой же формуле, как и для асинхронной машины (см. § 3-3): . (4-1) Большое значение при исследовании синхронной машины имеет характеристика холостого хода. Она представляет собой зависимость э.д.с. E0, наведенной в обмотке якоря при холостом ходе, от тока Iв (или от н.с. Fв) обмотки возбуждения при постоянной номинальной частоте вращения, n = const (рис. 4-10). Рис. 4-10. Характеристика холостого хода, E0 = f(Iв) при п = const. Так как при п = const (следовательно, f = const) э.д.с. Е0 согласно (4-1) пропорциональна Ф, то та же кривая в другом масштабе представляет собой магнитную характеристику, Ф = f(Fв). Характеристика холостого хода может быть получена путем расчета магнитной цепи машины для различных значений потока Ф и, следовательно, э.д.с. E0. Магнитная цепь машины состоит из пяти участков: воздушного зазора, зубцового слоя статора, его ярма, полюсов (зубцового слоя ротора для неявнополюсных машин) и ярма ротора (рис. 4-11). Рис. 4-11. Магнитная цепь явнополюсной синхронной машины. Зная сечения этих участков, определяем индукции B в них. Затем по кривым намагничивания для данных сортов стали находим соответствующие напряженности поля H. Умножив Н на длины участков, получим магнитные напряжения, сумма которых определяет н.с. обмотки возбуждения. Наибольшее магнитное напряжение здесь приходится на воздушный зазор: оно составляет 86 92% от н.с. обмотки возбуждения при E0 = Uн. Характеристика холостого хода может быть также получена опытным путем. Для этого нужно при номинальной частоте вращения синхронной машины, приводимой во вращение каким-нибудь первичным двигателем, изменять ток возбуждения Iв от нуля до некоторого максимума и затем от данного максимума опять до нуля. Измеренная при этом зависимость э.д.с. E0 от тока возбуждения Iв изобразится двумя ветвями характеристики: восходящей и нисходящей. Вторая пойдет несколько выше первой. Однако расхождение между ними, обусловленное гистерезисом в полюсах и ярме ротора, невелико; можно за истинную характеристику холостого хода считать кривую, проведенную посередине между ее ветвями. Синхронные машины часто включаются на параллельную работу. При такой работе не должны возникать уравнительные токи между машинами из-за различия форм кривых их э.д.с. e = f(t). Это условие наряду с другими вызвало необходимость стандартизовать кривую e = f(t) и выбрать в качестве стандартной синусоиду. При синусоидальных э.д.с. токи также будут практически синусоидальными. В этом случае значительно улучшаются условия работы машин, аппаратов, сетей, так как уменьшаются потери, вызванные магнитными полями токов, становится меньше опасность возникновения перенапряжений резонансного характера, ослабляется вредное воздействие линий электропередачи на линии связи. Дальше | Вверх 4-1. 4-2. Часть 1 Часть 2 4-3. 4-4. 4-5. 4-6. 4-7. 4-8. 4-9. 4-10. 4-11. 4-12. 4-13. 4-14. 4-15. Глава 5 |