NetNado
  Найти на сайте:

Учащимся

Учителям



1. /МОНОГРАФИЯ/АСТРОФИЗИКА (глава 17).doc
2. /МОНОГРАФИЯ/НАЧАЛО МОНОГРАФИИ.DOC
3. /МОНОГРАФИЯ/ОТВЕТЫ НА ВОПРОСЫ (глава - 18).doc
4. /МОНОГРАФИЯ/ОТВЕТЫ НА ВОПРОСЫ-ПРОДОЛЖЕНИЕ.doc
5. /МОНОГРАФИЯ/ПРЕДИСЛОВИЕ, ВВЕДЕНИЕ (главы 1-6).doc
6. /МОНОГРАФИЯ/ТРАНСМУТАИЯ ядер и главный закон (главы 15, 16).doc
7. /МОНОГРАФИЯ/ФОТОН (главы 7, 8).doc
8. /МОНОГРАФИЯ/ЭЛЕКТРОДИНАМИКА (глава 14).doc
9. /МОНОГРАФИЯ/ЭЛЕКТРОН, ПРОТОН, НЕЙТРОН, СПЕКТРЫ (главы 9, 10).doc
10. /МОНОГРАФИЯ/ЯДРА, АТОМЫ, МОЛЕКУЛЫ, ТЕРМОД. (главы 11-13).doc
17. астрофизические процессы и явления 17 Как родились планеты Солнечной системы
Philipp M. Kanarev. The Foundations of Physchemistry of Micro World. Monographic
18. ответы на вопросы о микромире 18 Элементы теории научного познания
Ответы на вопросы продолжение 18 Электродинамика и термодинамика микромира
Трансмутация ядер атомов
7. поиск модели фотона
14. введение в электродинамику микромира вводная часть
9. электрон, протон, нейтрон вводная часть
11. модели ядер атомов общие сведения о ядрах атомов

скачать doc




  1. ТРАНСМУТАЦИЯ ЯДЕР АТОМОВ


15.1. Альфа – распад
Человечество израсходовало самые большие финансовые ресурсы для изучения ядер атомов. Это дало, как положительный результат – атомную энергию, так и отрицательный – ядерное оружие. Приходит пора, когда все усилия надо направить на получение знаний о ядрах атомов, которые дают только пользу человечеству. Однако, на этом пути по прежнему остаётся непреодолимая преграда – отсутствие теории ядер, из которой следовали бы их модели. Пока капельная модель ядра считается наиболее близкой к реальности, но она, как и капля воды, не раскрывает структуру элементов, которые формируют её. Обусловлено это рядом причин, но главная из них – ошибочность представлений об орбитальном движении электронов в атомах. Живучесть этой ошибочности – вероятностный туман о поведении электрона в атоме, следующий из уравнения Шредингера. Чтобы успешно рассеять этот туман, надо было тщательно проанализировать результаты экспериментальной спектроскопии. В ней скрыта информация о поведении электронов в атомах и молекулах. Пятнадцать лет назад эта задача была успешно решена [26].

Тщательный анализ спектра атома водорода и других атомов и ионов позволил найти закон формирования их спектров, из которого однозначно следовало линейное взаимодействие электронов с протонами ядер атомов. Постепенное накопление новой информации о спектрах атомов и ионов, позволило сформулировать ряд гипотез о структуре ядра.

Линейное взаимодействие электрона с ядром атома возможно только при расположении протона на поверхности ядра. Из этого следует, что протон имеет две связи: одну с электроном, а другую - с нейтроном. Связь протона с нейтроном уже давно названа ядерной, а силы, реализующие её, – ядерными силами. Физическая природа этих сил до сих пор не установлена. Поэтому возникла необходимость найти её. Было обращено внимание на очень большую напряженность магнитного поля в центре симметрии электрона, равную . У протона она оказалась значительно больше –. Поскольку напряжённость магнитного поля убывает от центра его симметрии в кубической зависимости, то появились основания для формулировки гипотезы: ядерные силы имеют магнитную природу [34].

Далее, из экспериментальной информации о ядрах следует, что с увеличением количества протонов и нейтронов в ядрах доля лишних нейтронов увеличивается. Это означает, что нейтрон имеет в ядре больше связей, чем протон. Для проверки этого предположения была сформулирована гипотеза: нейтрон имеет на поверхности шесть разноимённых магнитных полюсов.

Вполне естественно, что в условиях отсутствия детальной информации о структуре протона и нейтрона пришлось считать их для начала сферическими, с равными радиусами сфер (рис. 168). Последующая проверка перечисленных гипотез путём построения моделей ядер дала такое обилие информации, совпадающей с экспериментальными данными ядерной физики, что указанные гипотезы уверенно заняли пьедестал постулатов.

Правила формирования моделей ядер автоматически следовали из экспериментальной информации о них. Эти правила позволили в течение нескольких дней построить ядра первых 29 химических элементов. Случилось это в начале ХХI века. С тех пор автор не пытался построить модели более сложных ядер, считая, что этого достаточно, чтобы другие продолжили эту работу. Конечно, наличие финансирования экспериментальных исследований, связанных с ядрами, стимулировало бы этот процесс, но его нет, поэтому рассмотрим давно известные ядерные процессы: альфа и бета распады. Начнём с альфа – распада (рис. 168).



а) b) c)

d) e) f)



h) j) g)
Рис. 168: a), b), c) - схемы ядер атома гелия – альфа-частицы

(светлые - протоны, серые – нейтроны); d), e), f) - схемы ядер атома неона (серые – осевые нейтроны, тёмные - не осевые нейтроны); g), h), j) - схемы ядер aтома кислорода
Известно, что радиоактивные ядра испускают альфа – частицы – ядра атомов гелия (рис. 168, b и c), состоящие из двух нейтронов и двух протонов. Изотопы гелия могут иметь ядра с одним (рис. 168, а), тремя и даже большим количеством нейтронов. Ядро, имеющее два нейтрона и два протона, является стабильным. Известно также, что магнитный момент атома гелия может быть равен нулю. Такие атомы имеют структуру ядра, показанную на рис. 168, с.

Ближайшим химическим элементом, входящим в восьмую группу вместе с гелием, является неон. Схемы моделей его ядер показаны на рис. 168, d, e, f. Как видно, они содержат ядра атома гелия, что полностью соответствует периодической таблице Д.И. Менделеева.

Поскольку ядра радиоактивных элементов, таких как уран, ещё не построены, то мы используем для анализа процесса альфа – распада ядра более простых химических элементов, например, неона (рис. 168, d, e, f).

Эксперименты показывают, что альфа – распад приводит к рождению химических элементов, сдвинутых влево в таблице химических элементов. Если бы неон был радиоактивен и испускал бы альфа - частицы (рис. 168), то его ядра превращались бы в ядра атома кислорода (рис. 168, g, h, j), подтверждая указанный экспериментальный факт.

Прежде всего, напомним, что синтез атома – это процесс ступенчатого сближения электронов с протонами ядра и излучение электронами фотонов с длиной волны от реликтового диапазона до начала рентгеновского диапазона. Процесс же поглощения фотонов электронами атомов возвращает электроны на более высокие энергетические уровни, где энергии связи их с протонами ядер могут стать равными нулю, и они окажутся свободными.

Состояние, при котором электроны атома излучают или поглощают фотоны названо возбуждённым. Когда эти процессы заканчиваются и электроны опускаются на самые нижние (близкие к протонам ядер) энергетические уровни, атом переходит в невозбуждённое состояние.

Аналогично идут процессы синтеза и радиоактивного распада ядер атомов. Процесс синтеза ядер сопровождается ступенчатым сближением протонов с нейтронами и излучением гамма фотонов и фотонов дальней рентгеновской зоны. Процесс излучения заканчивается при максимальном сближении протонов с нейтронами и наступает невозбужденное состояние ядра. Однако, в среде, окружающей ядро, могут существовать гамма фотоны или фотоны дальней рентгеновской зоны. Протоны ядра, поглощая их, вновь возбуждаются [270].

С учетом изложенного возникает вопрос о последовательности процесса альфа – распада. Есть основания полагать, что он начинается с потери связи между электронами атома и протонами, входящими в состав альфа – частицы, в момент, когда она ещё связана с ядром, и превращением радиоактивного атома в ион. Лишь только в этом случае излучится альфа – частица, а не атом гелия.

Протоны альфа частицы, находящейся в ядре, освободившись от электронов, имеют свободные внешние связи, которые позволяют им поглощать фотоны. В результате энергии связей протонов или их совокупностей, подобных альфа – частицам, с нейтронами ядра, уменьшаясь, почти выравниваются. Это свойство установлено экспериментально и называется насыщением ядерных сил [277].

При этом связь между нейтроном альфа - частицы и другим нейтроном, через который альфа – частица связана с остальной частью ядра, может стать меньше энергии, формируемой кулоновскими силами, отталкивающими протоны. В результате альфа – частица выталкивается из ядра. Процесс отделения альфа – частицы от ядра зависит от энергии фотона, поглощённого протоном альфа – частицы. Он наступает только тогда, когда поглощенный фотон, уменьшает энергию связи между нейтронами (места этих связей показаны на рис. 168, d, e j стрелками) до величины меньшей энергии, формирующей кулоновские силы, действующие между протонами ядра [270].

Известно, что альфа – частица покидает ядро атома урана , поглотив фотон с энергией E=4,2 МэВ [219]. Радиус (или длина волны) этого фотона равен
. (380)
Это фотон начала гамма диапазона. Поскольку протоны расположены на поверхности ядер, то они формируют мощный положительный потенциал, который выталкивает альфа - частицу, отделившуюся от ядра, и сообщает ей скорость. Экспериментально установлено, что пробег этой частицы в воздухе может достигать 4 см. [219]. С виду, это небольшой пробег, но он больше размера ядра и самой частицы на 12 порядков.

Вполне естественно, что альфа – частица, имея положительный заряд, ионизирует атомы и молекулы среды, в которой она движется, и их электроны начинают излучать фотоны, формирующие след частицы в среде. Это – главная экспериментальная информация, позволяющая изучать альфа – частицы и их поведение.
15.2. Бета – распад
Бета – распад – излучение нейтронами электронов, которые объединяются в кластеры и называются тяжёлыми электронами или отрицательно заряженными бета – частицами. Одна из главных причин бета – распада – нестабильность нейтрона в свободном состоянии. Период его полураспада равен всего 12 мин. Бета – распад значительно сложнее альфа – распада, поэтому в нём больше противоречивой информации [219]. Он сопровождается не только процессами излучения электронов нейтронами, но процессами поглощения электронов протонами. Главная особенность этих процессов заключается в том, что нарушается баланс масс до распада нейтрона и после, а также поглощение протоном дробного количества электронов.

Чтобы спастись от непонимания этого таинственного явления, физики придумали частицу, которая уносит недостающую массу, и назвали её нейтрино. Поскольку нет ни единого эксперимента прямой регистрации этой частицы, то ей придали экзотические свойства – отсутствие заряда и массы покоя, а также скорость, равную скорости света, и абсолютную проницаемость. Удивительно, но фотон имеет эти же свойства, за исключением абсолютной проницаемости, и великолепно проявляет себя в неисчислимом количестве экспериментов. Почему нейтрино, имея такие же свойства, никак не проявляет себя? Об этом даже и не задумались, продолжая попытки найти экспериментальные факты, где нейтрино, вроде бы проявляет себя.

Удивительно и то, что эксперты Нобелевского комитета легко соглашаются со столь сомнительными достижениями и продолжают выдавать за них премии. А почему не посмотреть на таинственную роль нейтрино по новому?

Известно, что эксперименты бывают прямые и косвенные. Первые сразу дают необходимый результат, а вторые – лишь косвенную информацию о том, что полученный результат соответствует реальности. Тут есть основания ввести понятие ступени косвенности. Можно считать близким к реальности показатель, соответствующий первой ступени косвенности. Увеличение количества этих ступеней переводит процесс познания, который назван в народе: гадание на кофейной гуще. Что касается нейтрино, то оно проявляет себя в экспериментах 5–ой или даже в 10-ой ступени косвенности. Тем не менее, ученые сохраняют серьёзность в оценке достоверности такой информации, так как отказ от её достоверности оказывается слишком дорогим для тщеславия и налаженного незаслуженного финансирования. Он разрушает с трудом построенное теоретическое здание не только ядерной, но и атомной физики.

Мы не связаны с этими заблуждениями, поэтому поступим просто: сформулируем новую гипотезу и посмотрим на её плодотворность. Часть массы, исчезающей в ядерных процессах, не оформившись ни в какую частицу, образно говоря, растворяется, превращаясь в субстанцию, называемую эфиром. Мы уже показали, что эфир является основным источником восстановления массы электрона после излучения им фотонов. Так что если величина теряемой массы не соответствует стабильной массе какой-либо элементарной частицы, то эта масса, не оформившись ни в какую частицу, превращается в эфир. А теперь приведём количественные расчёты.

Известно, что масса покоя электрона , масса покоя протона , а масса покоя нейтрона . Разность между массой нейтрона и протона оказывается равной . Это составляет масс электрона.

Таким образом, чтобы протон стал нейтроном, он должен захватить 2,531 электрона. Поскольку поглощается только целое число электров, то возникает вопрос: куда девается остаток массы электрона? Современная физика нарушенный баланс масс в этом процессе объясняет просто: рождением нейтрино.

Изложенное позволяет полагать, что протон может поглощать не единичные электроны, а их кластеры. Однако, в любом случае часть электрона с массой останется не поглощенной потому, что лишняя масса не нужна протону для поддержания его стабильного состояния. Не сформировавшись ни в какую частицу, она разрушается, превращаясь в субстанцию, которую мы называем эфиром.

Таким образом, если протон ядра поглощает 2,531 масс электрона, то он становится нейтроном и рождается ядро нового химического элемента с меньшим количеством протонов. Вполне естественно, что новый химический элемент окажется левее старого в таблице Д.И. Менделеева.

Известно, что нейтрон, излучивший электроны, превращается в протон. Вполне естественно, что при этом появляется ядро нового химического элемента, расположенного в периодической таблице правее старого элемента.

Во всех этих случаях появляется дисбаланс масс, обусловленный тем, что электрон, протон и нейтрон существуют в стабильном состоянии только при строго определённой массе. Конечно, описанные процессы сопровождаются излучениями и поглощениями гамма фотонов, которые вносят свой вклад в формирование дисбаланса масс ядер на разных стадиях их трансформации, но мы пока не будем останавливаться на детальном анализе этих процессов.

Ещё важная особенность – излучение, так называемых нейтрино при синтезе нейтронов. Например, образование из двух нейтронов названо динейтроний. Это метастабильное (т.е. долгоживущее!!!) связанное состояние двух нейтронов и одного нейтрино. Масса атома динейтрония меньше, чем масса двух свободных нейтронов, так как часть её унесена таинственным нейтрино. Время жизни динейтрония примерно 1 миллисекунда. Дальше мы увидим, что излучение нейтрино при синтезе ядер разных элементов путём соединения их нейтронами – главное условие безопасности этого процесса, идущего в живых организмах.

15.3. Искусственная радиоактивность и синтез ядер
Экспериментальный процесс превращения одних химических элементов в другие называется искусственной радиоактивностью.

В 1932 г. Боте и Беккер, обстреливая ядра бериллия альфа – частицами, получили ядра атома углерода и нейтроны. Ниже представлено уравнение (381) ядерной реакции и схема её реализации (рис. 169).
. (381)


+ +



Рис. 169. Схема реакции (381) (кольцевые нейтроны атома углерода обозначены темным цветом)

В 1934 г. Ф. и И. Жолио – Кюри обнаружили, что при облучении изотопа алюминия альфа частицами ядра алюминия превращались в ядра радиоактивного изотопа фосфора , которого в природе не существует.


+ +








Рис. 170. Схема реакции (382)
Ядерная реакция (381) не проясняет причину радиоактивности, а схма (рис. 170) показывает, что уменьшение нейтронов уплотнило ядро и кулоновские силы отталкивания протонов делают его нестабильным.
. (382)
Известно, что при делении тяжёлых ядер выделяется тепловая энергия, используемая на атомных электростанциях. Мы уже показали, что она является следствием синтеза атомов новых химических элементов, но не их ядер. Однако, на это не обращается внимание и делается попытка получить тепловую энергию при синтезе ядер атомов гелия. Реакция синтеза ядер гелия представлена ниже.

(383)
Величина энергии 17,6 МэВ впечатляет и используется, как главный аргумент для выделения денег на строительство Токамаков. Тот факт, что указанная энергия принадлежит гамма фотонам, которые не генерируют тепловую энергию, игнорируется.

Мы же теперь знаем, что тепловую энергию генерируют только те фотоны, которые излучаются электронами при синтезе атомов гелия. Она не может быть больше суммы энергий ионизации двух электронов этого атома, а именно, не может быть больше энергии (54,416 + 24,587)=79,003 eV, которая излучается при последовательном соединении двух электронов этого атома с двумя протонами его ядра. Если же эти электроны вступают в связь с ядром одновременно, то каждый из них не может излучить энергию, большую энергии связи с протоном, соответствующей первому энергетическому уровню. Она известна и равна . Два электрона излучат 26,936 eV. Это реальная тепловая энергия, которая выделится при синтезе атома гелия. Энергия 17,6 МэВ принадлежит гамма фотонам, которые не обладают свойствами, генерирующими тепловую энергию.


    1. Трансмутация ядер при плазменном электролизе воды


Холодный ядерный синтез – стал надёжным экспериментальным фактом в конце ХХ века. Для проверки достоверности этого факта мы изготовили два катода массой 18,10 гр. и 18,15 гр. из железа. Первый катод проработал 10 часов в плазмоэлектролитическом процессе в растворе KOH, а второй проработал такое же время в растворе NaOH. Масса первого катода не изменилась, а второго уменьшилась на 0,02 грамма. Плазмоэлектролитический реактор работал при напряжении 220 Вольт и силе тока (0,5-1,0) Ампера (рис. 171) [277].

Известный японский ученый (соавтор этого эксперимента) Tadahiko Mizuno, работающий в Division of Quantum Energy Engineering Research group of Nuclear System Engineering, Laboratory of Nuclear Material System, Faculty of Engineering, Hokkaido University, Kita-ku, North 13, West-8 Sapporo 060-8628, Japan любезно согласился провести химический анализ образцов катодов методом ядерной спектроскопии (EDX). Вот результаты его анализа [197], [198]. На поверхности не работавшего катода зафиксировано 99,90% железа (Fe).


Рис. 171. Схема плазмоэлектролитического реактора (патент № 2210630 [202] ):

1-крышка реактора; 4-корпус реактора; 7-катод; 11-анод; 13-дозатор раствора;

16-охладитель; 23-патрубок для выхода газов
На рабочей поверхности катода, работавшего в растворе KOH, появились новые химические элементы (табл. 44).

Таблица 44. Химический состав поверхности катода, работавшего в растворе KOH

Элемент

Si

K

Cr

Fe

Cu

%

0,94

4,50

1,90

92,00

0,45


Химический состав поверхности катода, работавшего в растворе NaOH, оказался другим (табл. 45).
Таблица 45. Химический состав поверхности катода, работавшего в растворе NaOH

Элем.

Al

Si

Cl

K

Ca

Cr

Fe

Cu

%

1,10

0,55

0,20

0,60

0,40

1,60

94,00

0,65


Проведем предварительный анализ полученных данных (табл. 44, 45) с учетом моделей ядер атомов. Поскольку железо является материалом катода, то ядра его атомов - мишени ядер атомов водорода - протонов (табл. 44). При трансмутации ядер железа (рис. 172, b) образуются ядра атомов хрома (рис. 172, a) и ядра атомов меди (рис. 166, с) [270], [277].

При превращении ядра атома железа (рис. 172, b) в ядро атома хрома (рис. 172, а) ядро атома железа (рис. 172, b) должно потерять два верхних боковых протона и два нейтрона (рис. 172, a).

Для образования ядра атома меди (рис. 172, с) из ядра атома железа требуется дополнительно 3 протона и 6 нейтронов, всего 9 нуклонов. Так как на поверхности катода (табл. 44) атомов хрома, которые, как мы предполагаем, образовались из ядер атомов железа почти в четыре раза больше, чем атомов меди, то в растворе, несомненно, присутствуют лишние протоны и нейтроны разрушенных ядер атомов железа.



a) Cr (24,28) b) Fe (26,28) c) Cu (29,34)
Рис. 172. Схемы ядер атомов: а) хрома, b) железа, c) меди
Допустим, четыре ядра атомов железа становятся ядрами атома хрома. Тогда общее количество свободных протонов и нейтронов (нуклонов) оказывается равным 16. Поскольку на каждые четыре атома хрома приходится один атом меди, то на формирование одного ядра атома меди расходуется 9 нуклонов, и 7 нуклонов остаются свободными.

Посмотрим, что образуется при разрушении ядра атома калия. Калий расположен в первой группе четвертого периода Периодической таблицы химических элементов. Его ядро содержит 19 протонов и 20 нейтронов (рис. 173, а).

На рис. 173, а видно слабое звено ядра атома калия. Оно расположено в середине его осевых нейтронов. При трансмутации ядер атомов калия могут образоваться ядра атомов кислорода (рис. 173, b) и его изотопов, а также ядра атомов кремния (рис. 173, с).

Анализ структуры ядра атома калия (рис. 173, а) показывает, что оно является наиболее вероятным источником ядра атома кремния (рис. 173, c), атомы которого появляются на катоде (табл. 44, 45).



a) K (19,20) b) O (8,8) c) Si (14,14)

Рис. 173. Схемы ядер атомов: а) калия, b) кислорода, с) кремния



Нетрудно посчитать, что при разрушении одного ядра атома калия и рождении одного ядра атома кремния образуется 5 свободных протонов и 6 свободных нейтронов то есть 11 нуклонов [270], [277].

Таким образом, трансмутация ядер атомов железа и атомов калия приводит к образованию свободных протонов и нейтронов. Поскольку протоны не могут существовать в свободном состоянии, то из них рождаются, прежде всего, атомы водорода. Если протоны соединяются с нейтронами после разрушения ядер атомов железа и калия, то возможно образование дейтерия, трития и гелия.

Обратим внимание на главный факт – отсутствие в материале катода атомов натрия. На катоде, работавшем в растворе KOH (табл. 44), появились атомы калия и это естественно. Почему же атомы натрия отсутствуют на катоде, работавшем в растворе NaOH (табл. 45)? Ответ пока один: ядра атомов натрия полностью разрушаются при плазмоэлектролитическом процессе. Наличие калия на поверхности катода, работавшего в растворе NaOH, (табл. 45) можно объяснить плохой промывкой реактора после работы с раствором KOH.

Поскольку при разрушении ядра атома натрия появляются свободные протоны и нейтроны, то некоторые ядра этого элемента начинают достраиваться до ядер атомов алюминия (рис. 174, b), хлора (рис. 174, с) и кальция (рис. 65).


a) Na (11,12) b) Al (13,14) c) Cl (17,18)
Рис. 174. Схемы ядер атомов: а) натрия, b) алюминия, с) хлора
Конечно, если бы мы знали общее количество трансмутирующих ядер атомов железа, калия и натрия и точный состав генерируемых газов при плазмоэлектролитическом процессе, то можно было бы определить ядра атомов, формирующихся из дополнительных нуклонов. Сейчас же мы можем только предполагать, что большинство новых ядер формируют протоны, то есть ядра атомов водорода.

Отсутствие атомов натрия на поверхности катода (табл. 45) - явный признак разрушения ядер этого элемента при плазмоэлектролитическом процессе.

Анализ приведенных таблиц показывает, что трансмутация ядер железа, из которого изготовлены катоды, приводит в обоих случаях к образованию хрома и меди. Из разрушенных ядер натрия, по-видимому, образуется алюминий, хлор и кальций. В любом из этих случаев формируются свободные протоны и нейтроны [270], [277].

Однако не все свободные протоны и нейтроны расходуются на строительство ядер атомов алюминия, хлора и кальция. Часть их идет на формирование атомов водорода. В любом из этих случаев синтезируются атомы и молекулы водорода. Анализ показал, что плазмоэлектролитический процесс извлекает из одного литра раствора не более 0,005 кг щелочного металла. Из этого следует, что в результате разрушения ядер атомов железа могут генерироваться дополнительные газы, главным образом водород.

Многочисленные эксперименты показывают, что при плазменном электролизе воды устойчиво генерируется до 50% дополнительной тепловой энергии, что значительно меньше результатов расчетов, следующих из существующих теорий холодного ядерного синтеза. Поэтому есть необходимость проанализировать энергетику процесса рождения частиц при трансмутации ядер атомов.

Рассматривая модель электрона, мы установили, что он может существовать в свободном состоянии только при строго определенной его электромагнитной массе. При соединении с ядром атома он излучает часть энергии в виде фотонов и его электромагнитная масса уменьшается. Но стабильность его состояния при этом не ухудшается, так как энергию, унесенную фотоном, компенсирует энергия связи электрона с ядром атома.

При повышении температуры окружающей среды электрон начинает поглощать тепловые фотоны и переходить на более высокие энергетические уровни атома, уменьшая связь с ним. Став свободным, он вновь вступает в связь с атомом лишь при понижении температуры окружающей среды. По мере уменьшения этой температуры он будет излучать фотоны и опускаться на более низкие энергетические уровни.

Если же электрон окажется в свободном состоянии в результате случайного внешнего воздействия на атом и в окружающей среде не будет необходимых ему фотонов для восстановления массы, то он немедленно начинает поглощать эфир из окружающей среды и восстанавливать таким образом свои константы: массу, заряд, магнитный момент, спин и радиус вращения. Электрон приобретает устойчивое свободное состояние только после восстановления всех своих констант.

Таким образом, если периодическая смена между свободным состоянием и состоянием связи с атомом происходит в результате случайных воздействий на атом, то электрон каждый раз восстанавливает свою электромагнитную массу за счет поглощения эфира. То есть фактически он выполняет роль преобразователя энергии эфира в энергию тепловых фотонов.

Японские исследователи Ohmori и Mizuno зафиксировали нейтронное излучение при плазменном электролизе воды и сообщили, что источником этого излучения может быть не только ядерный процесс, но и процесс захвата электронов свободными протонами [197], [198].

Поскольку при плазмоэлектролитическом процессе электролиза воды генерируется водородная плазма, в которой протоны могут существовать в свободном состоянии, то имеется вероятность процесса захвата ими свободных электронов и превращения в нейтроны. Изменение баланса масс частиц при этом процессе мы уже описали.

Так как фотоны излучаются и поглощаются только электронами, то свободный протон, поглощающий электроны, не способен превращать остаток массы третьего электрона в фотон. Если электрон поглощается протоном третьим и более половины своей массы отдает ему, чтобы тот превратился в нейтрон, то оставшаяся часть массы () электрона, не имея возможности сформироваться в фотон, превращается в порцию эфира, которая «растворяется» и смешивается с эфиром пространства. Доказательством такого утверждения может служить отсутствие в составе плазмы фотонов с массой, соответствующей той части массы третьего электрона, которую не поглотил протон при превращении в нейтрон. Рассчитаем энергию такого фотона [270], [277] .

Разность между массой нейтрона и протона равна . Если мы вычтем эту величину из массы трех электронов, то получим массу , из которой должен сформироваться фотон
(384)
Если из этого остатка массы сформируется фотон, то его энергия будет равна
(385)
Эта величина энергии соответствует рентгеновскому спектру (табл. 4), поэтому рождение каждого свободного нейтрона должно сопровождаться рождением одного рентгеновского фотона. Если этого нет, то у нас остается два выхода: 1 - считать, что при рождении нейтрона, в рассматриваемом случае, из массы образовалось нейтрино и улетело в неизвестном направлении; 2 - в рассматриваемом процессе отсутствовали условия для формирования фотонов и масса , не оформившись ни в какую частицу, «растворилась» в эфире. Какой вариант ближе к истине? Точного ответа пока нет, но известно, что японские исследователи зафиксировали при плазменном электролизе воды только нейтронное излучение с интенсивностью порядка 50000 нейтронов в секунду и не зафиксировали рентгеновское излучение [51].

Если бы при этом рождались рентгеновские фотоны, то они не повышали бы тепловую эффективность плазмоэлектролитического процесса, так как это - не тепловые фотоны. Тепловые фотоны излучаются и поглощаются при энергетических переходах электронов на самых удаленных от ядер атомов энергетических уровнях, где генерируются инфракрасные и близкие к ним из оптической области спектра фотоны с энергиями (0,001-3,3) eV (табл. 4).

Таким образом, процессы синтеза нейтронов при плазменном электролизе воды не будут генерировать дополнительную тепловую энергию. Однако появление нейтронов в плазме будет способствовать образованию ядер дейтерия и возможно - трития. Поскольку при этих процессах баланс масс почти не изменяется, то у нас нет оснований ожидать появление дополнительной энергии при формировании ядер дейтерия (рис. 49, b) и трития (рис. 49, c). Однако она обязательно появляется при синтезе атомов дейтерия и трития, то есть атомов водорода.

Чтобы стать протоном, нейтрон должен излучить нечто с массой . Вычислим длину волны фотона, соответствующего этой массе. Используя константу локализации (69), имеем
. (386)
Эта длина волны соответствует фотонам гамма диапазона (табл. 4), то есть не тепловым фотонам и этот процесс не дает дополнительной тепловой энергии. Таким образом, если при плазменном электролизе воды идет процесс формирования атомов гелия, то он должен сопровождаться гамма излучением. Если этого излучения нет, а атомы гелия все-таки образуются, то указанную порцию массы уносит нейтрино или же эта масса, не имея возможности оформиться в фотон, «растворяется» в окружающем пространстве, то есть переходит в состояние эфира [277]. Поскольку рентгеновские фотоны и гамма фотоны не являются тепловыми, то процессы рождения нейтронов и протонов не дают избыточной тепловой энергии.

Главным источником энергии разрушения ядер атомов железа по - видимому являются микровзрывы при соединении водорода с кислородом в зоне плазмы. В результате протоны атомов водорода, бомбардируя катод, разрушают ядра железа. Следствия этого разрушения - появление свободных протонов и нейтронов. Отметим особенность процесса. Протоны покидают ядро не в результате радиоактивности, а принудительно. Поэтому они оказываются в положении с недостатком энергии, как и валентные электроны атомов при разрушении молекул. Чтобы сохранить устойчивое состояние, они должны восполнить недостаток энергии, соответствующей энергии излученных гамма фотонов при синтезе ядра. Где они возьмут эти фотоны? Из окружающей среды. Если это так, то вблизи плазмоэлектролитического реактора должно наблюдаться снижение естественного фона гамма излучения. Многократные измерения показали, что вблизи плазмы уровень гамма излучения меньше фонового.

Возможен и другой вариант. Атомы щелочного металла, бомбардируя атомы катода, сами разрушаются. В этом случае протоны разрушившихся ядер начинают формировать атомы водорода. Процессы синтеза атомов и молекул водорода генерируют дополнительную тепловую энергию [277].

Таким образом, экспериментальный факт трансмутации ядер атомов при плазмоэлектролитическом процессе даёт нам основание полагать, что этот процесс открывает новые перспективы изучения материи на ядерном, атомарном и молекулярном уровнях.
15.5. Трансмутация ядер атомов в Природе
В печати сообщалось, что попытки лишить пищу морских моллюсков и раковин кальция, необходимого им для формирования панциря, не остановили процесс его роста. К этому следует добавить, что новые породы кур несут яйца с кальциевой скорлупой практически каждый день, поэтому есть основания полагать, что и в их организмах идут процессы образования ядер и атомов кальция. Масса скорлупы куриного яйца средней величины равна 6,4 грамма. Скорлупа 360 яиц будет иметь массу 2,30 кг. Это равно, примерно, массе самой курицы. Проанализируем возможные варианты этих процессов.

Обратим внимание на структуру ядра атома кальция (рис. 65 и 175, а). Верхняя часть этого ядра представляет собой ядро атома азота (рис. 52, а и 175, b). Средняя часть ядра атома кальция состоит из ядра атома лития (рис. 48, b и 176, а), дополнительного протона атома водорода (рис. 46, а и 176, b) и изотопа атома гелия (рис. 47, а и 176, c), а нижняя часть ядра атома кальция также представляет собой ядро атома азота (рис. 176, b).



b)
а)

Рис. 175. Схемы: а) - ядро атома кальция Ca (20,20); b) – ядро атома азота
А теперь проанализируем условия реализации процесса синтеза ядра атома кальция. Прежде всего, нижняя и верхняя части - ядра атома азота (рис. 176, b) имеют протоны лишь на одном конце оси симметрии. Другие концы заканчиваются нейтронами. Это значит, что в этой области атома азота (рис. 94, b) нет валентного электрона, и нижний нейтрон этого ядра может принять дополнительные нейтроны и удлинить ядро. Далее, ядро атома лития (рис. 176, а) не имеет протона в своей верхней части. Это значит, что к свободному нейтрону ядра атома лития может присоединиться протон атома водорода (рис. 46, а, b и рис. 176, b) [277].



а) b) c)

Рис. 176. Схемы: а) ядро атома лития; b) протон; с) ядро изотопа атома гелия
Дальше, при анализе спектров звёзд, мы увидим, что кальций появляется в их спектрах после появления спектральных линий азота и кислорода. Это – серьёзное косвенное доказательство того, что ядра атомов кальция формируются из более простых ядер. В противном случае спектральные линии кальция должны появляться в спектрах звёзд после появления линий алюминия, фосфора, калия.

Итак, основное условие для формирования ядра атома кальция – наличие у других ядер свободных поверхностных нейтронов, которые соединяют ядра друг с другом и излучают безопосное нейтрино. Это условие обусловлено тем, что в зоне действия свободных нейтронов атома азота нет валентных электронов атомов (рис. 94, b), которые экранировали бы эту область атома и затрудняли процесс соединения ядер [277].

Второе важное следствие заключается в том, что совокупность ядер более простых химических элементов формирует ядро атома кальция совместно со своими электронами. Это значит, что отсутствует процесс синтеза атомов кальция, при котором выделяется большое количество тепловой энергии.

Известно, что при синтезе двух нейтронов излучается нейтрино, поэтому образование из двух нейтронов называют «динейтроний».

Нейтрино не является частицей, поэтому её излучение не является источником опасности для живых организмов. Из этого следует безопасность процесса синтеза ядер сложных химических элементов из ядер более простых элементов, если этот процесс сопровождается соединением нейтронов двух ядер. Именно этот процесс идёт при формировании среднего яруса ядра атома кальция (рис. 175, а) и соединения его с верхней и нижней частями ядра.

Итак, исходная информация позволяет специалистам анализировать процессы синтеза ядер зримо и проверять их достоверность, привлекая экспериментальные данные.
16. ГЛАВНЫЙ ЗАКОН МАТЕРИАЛЬНОГО МИРА
Закон сохранения кинетического момента - один из главных законов не только неживой, но и живой Природы. Его реализация в Природе является началом всех начал. Чтобы составить более четкое представление о сути действия этого закона, обратимся вначале к легко наблюдаемому явлению, в котором видно, как он работает.

Если Вы смотрели по телевидению соревнования по фигурному катанию, то легко вспомните, как фигурист изменяет скорость своего вращения относительно оси, проходящей вдоль его тела. Вначале он вращается при разведенных в стороны руках с небольшой угловой скоростью. Потом он прижимает руки к груди или поднимает их вертикально вверх и вращение его резко ускоряется. Затем, если он разведёт руки в стороны, то угловая скорость вращения его вновь уменьшается. Явление это управляется одним из самых фундаментальных законов Природы - законом сохранения кинетического момента. Он гласит, что если сумма моментов внешних сил, действующих на вращающееся тело, равна нулю, то кинетический момент остается постоянным.

Итак, как проявляется сущность закона сохранения кинетического момента? Посмотрите, как выражается этот закон математически: Вы сразу узнали постоянную Планка. В эту константу Природа и заложила этот закон. Он работает в условиях отсутствия внешнего воздействия на вращающееся тело. Если рассматривать вращение фигуриста, то он, конечно, испытывает внешнее воздействие. Оно проявляется в виде сопротивления, создаваемого воздухом, а также в виде сил трения, действующих на коньки фигуриста. Так что закон этот проявляется здесь не в чистом виде. Но, тем не менее, небольшое сопротивление воздуха и льда дают нам возможность увидеть проявление этого закона [270].

А теперь посмотрите на приведенное выше выражение постоянной Планка Масса фигуриста в момент вращения не изменяется. Однако распределение этой массы изменяется. Когда он разводит руки, то они удаляются от оси его вращения и момент инерции фигуриста увеличивается, так как величина, равная массе рук, умноженной на квадрат расстояний их центров масс от оси вращения, растет. Сразу видно: чтобы постоянная Планка осталась постоянной, скорость вращения фигуриста должна уменьшиться. Когда же он (или она) приближает руки к оси своего вращения, то Вы сами видите, что произойдет со скоростью вращения при Когда фигурист приближает руки к оси своего вращения, то величина уменьшается, так как уменьшается расстояние . Чтобы величина осталась постоянной, скорость вращения фигуриста должна возрасти. Что мы и наблюдаем. Конечно, если бы не было никакого сопротивления, то фигурист мог бы вращаться вечно.

Нас поражает постоянство постоянной Планка. Оно подтверждено многими ее расчетами и многими экспериментальными данными. Это указывает на то, что постоянством постоянной Планка управляет какой-то фундаментальный закон Природы. И вот теперь мы видим, что этим законом является закон сохранения кинетического момента.

Мы уже увидели, как проявляется этот закон в поведении фотонов всех частот, в поведении электронов при их энергетических переходах в атомах и при формировании молекул, а сейчас покажем ряд примеров проявления этого закона в Природе. Конечно, некоторые из этих примеров являются пока чисто гипотетическими, требуется их основательная проверка. Тем не менее, их надо привести, чтобы привлечь внимание исследователей к глобальной роли закона сохранения кинетического момента.



a)



b)



Рис. 177. Схема к определению направления вектора кинетического момента:

а) - схема винта, b) - схема модели электрона
На рис. 177, а направление вектора кинетического момента, смоделировано вращением и продольным перемещением правого винта, и рядом показано направление вектора постоянной Планка и совпадающего с ним по направлению вектора магнитного момента электрона (рис. 177, b).

Направления векторов постоянной Планка и магнитных моментов электрона и протона показаны на рис. 177. Протон и электрон атома водорода сближают их разноименные электрические поля, а их одноименные магнитные полюса ограничивают это сближение. Обратим внимание на то, что векторы кинетических моментов (спинов) и электронов, и протонов в атоме (рис. 178) и молекулах водорода (рис. 179) совпадают по направлению. В аналогичном направлении закручена и молекула ДНК (рис. 180, а). Атомы, формирующие эту молекулу, действительно закручивают её в левую сторону. Чешуйки шишки, которая растёт строго вертикально (рис. 180, b), также закручены против хода часовой стрелки.

Итак, формированием электронов, протонов, атомов и молекул водорода управляет закон сохранения кинетического момента. Если этот закон работает на молекулярном уровне, то его действие должно проявляться и при формировании организмов. Наиболее ярко это отражено в форме улиток и морских раковин. Абсолютное большинство их закручено влево, против хода часовой стрелки (рис. 181).

Рис. 178. Схема модели атома водорода


Рис. 179. Схемы молекул водорода




а)



b)


Рис. 180. Схема молекулы ДНК и фото шишки








Рис. 181. Абсолютное большинство морских раковин закручено против хода часовой стрелки
Видимо, по этой же причине у большинства животных правая передняя конечность развита сильнее левой. У нас появляются основания полагать, что у большинства людей правая рука развита больше левой именно по этой же причине.

Японский исследователь Hideo Haysaka экспериментально доказал, что ускорение свободного падения у падающего гироскопа с правым вращением меньше, чем с левым (рис. 182).

Изложенное провоцирует нас предположить, что у поверхности нашей планеты существует слабое левовращающееся ротационное поле. Векторы кинетических моментов всех атомов и молекул нашей планеты направлены беспорядочно и компенсируют друг друга везде, кроме приповерхностного слоя. В силу этого они и формируют слабое левозакрученное (против часовой стрелки) ротационное поле (рис. 182, а).

Вращающиеся гироскопы тоже формируют вокруг себя вращающиеся ротационные поля, которые должны взаимодействовать с левовращающимся ротационным полем Земли. Российские инженеры Левин Э.И. и Плотников С.В. установили, что вес вращающегося гироскопа зависит от направления его вращения. На рис. 182, b представлены результаты эксперимента Плотникова С.В. Как видно, вес левовращающегося гироскопа 1 увеличивается, а правовращающегося - 2 уменьшается. Сравнивая направления векторов кинетических моментов у атома (рис. 178) и молекулы (рис. 179) водорода, у молекулы ДНК (рис. 180), у раковин (рис. 181) с направлением вектора кинетического момента гироскопа 1 (рис. 182, а), видим их аналогию.

Она заключается в том, что направления векторов суммарных кинетических моментов атомов поверхности Земли и вектора левовращающегося (против часовой стрелки) гироскопа 1 совпадают и, сближаясь, увеличивают его вес (рис. 182, b). А вектор правовращающегося (по часовой стрелке) гироскопа 2 направлен противоположно вектору . В результате формируются силы, которые отталкивают этот гироскоп от Земли и уменьшают его вес (рис. 182, b). Нетрудно видеть, что оба эти явления аналогичны явлениям взаимодействия фотонов с разной циркулярной поляризацией (рис. 28).

Невольно возникает вопрос: если Солнечная система и наша Галактика вращаются в одну сторону, то этот процесс должен генерировать космическое ротационное поле? Это оказалось действительно так. Ю.А. Бауров экспериментально доказал существование космического ротационного поля и вектор, характеризующий это поле, назвал Векторным потенциалом [95], [96].

Существуют результаты наблюдений, показывающие, что Векторный потенциал влияет на формирование солнечных протуберанцев. Из изложенного следует однозначная достоверность интерпретации некогда суперсекретных американских летающих тарелок, основанных на эффекте «Бифельда-Брауна», но мы воздержимся от изложения этой интерпретации по известной причине.


Рис. 182. а) схема формирования левовращающегося ротационного поля у поверхности Земли и взаимодействия с ним левовращающегося гироскопа 1 и правовращающегося гироскопа 2; b) изменение веса гироскопов: левовращающегося 1 и правовращающегося 2
Конечно, мы привели краткое описание цепи природных явлений, где проявляется влияние кинетического момента. Такое совпадение вряд ли случайно, поэтому оно заслуживает глубокого изучения.