NetNado
  Найти на сайте:

Учащимся

Учителям



1. /МОНОГРАФИЯ/АСТРОФИЗИКА (глава 17).doc
2. /МОНОГРАФИЯ/НАЧАЛО МОНОГРАФИИ.DOC
3. /МОНОГРАФИЯ/ОТВЕТЫ НА ВОПРОСЫ (глава - 18).doc
4. /МОНОГРАФИЯ/ОТВЕТЫ НА ВОПРОСЫ-ПРОДОЛЖЕНИЕ.doc
5. /МОНОГРАФИЯ/ПРЕДИСЛОВИЕ, ВВЕДЕНИЕ (главы 1-6).doc
6. /МОНОГРАФИЯ/ТРАНСМУТАИЯ ядер и главный закон (главы 15, 16).doc
7. /МОНОГРАФИЯ/ФОТОН (главы 7, 8).doc
8. /МОНОГРАФИЯ/ЭЛЕКТРОДИНАМИКА (глава 14).doc
9. /МОНОГРАФИЯ/ЭЛЕКТРОН, ПРОТОН, НЕЙТРОН, СПЕКТРЫ (главы 9, 10).doc
10. /МОНОГРАФИЯ/ЯДРА, АТОМЫ, МОЛЕКУЛЫ, ТЕРМОД. (главы 11-13).doc
17. астрофизические процессы и явления 17 Как родились планеты Солнечной системы
Philipp M. Kanarev. The Foundations of Physchemistry of Micro World. Monographic
18. ответы на вопросы о микромире 18 Элементы теории научного познания
Ответы на вопросы продолжение 18 Электродинамика и термодинамика микромира
Трансмутация ядер атомов
7. поиск модели фотона
14. введение в электродинамику микромира вводная часть
9. электрон, протон, нейтрон вводная часть
11. модели ядер атомов общие сведения о ядрах атомов

скачать doc




14. ВВЕДЕНИЕ В ЭЛЕКТРОДИНАМИКУ МИКРОМИРА
Вводная часть
Электродинамика – раздел физики, в котором изучаются носители электричества, формируемые ими электрические и магнитные поля, а также взаимодействия между ними. Она родилась в начале 19-го века, во времена Фарадея и Максвелла.

Экспериментальной основой существующей электродинамики является закон электромагнитной индукции, открытый Майклом Фарадеем в 1831 году. Суть этого закона кратко можно выразить так: переменное электрическое поле создаёт магнитное поле, а переменное магнитное поле создаёт электрическое поле. На основании этого считается, что работа электромоторов, электрогенераторов, трансформаторов и других многочисленных электротехнических устройств – результат взаимодействия электрических и магнитных полей. Проверим связь с реальностью таких представлений.
14.1. Движение электронов вдоль проводов

(Плюс – минус, юг-север)
Мы уже показали, что электрон представляет собой полый тор, который имеет два вращения: относительно оси симметрии и относительно кольцевой оси тора. Вращение относительно кольцевой оси тора формирует магнитное поле электрона, а направления магнитных силовых линий этого поля формируют два магнитных полюса: северный N и южный S (рис. 42). Вращением электрона относительно центральной оси управляет кинетический момент - векторная величина. Магнитный момент электрона - тоже величина векторная, совпадающая с направлением вектора кинетического момента . Оба эти вектора формируют северный магнитный полюс электрона (N), а на другом конце центральной оси его вращения формируется южный магнитный полюс (S). Формированием столь сложной структуры электрона (рис. 42) управляют более 20 констант. Имея эту общую информацию о структуре электрона, приступим к анализу его поведения в проводах [270], [277].

Так как протоны находятся в ядрах атомов, а электроны на их поверхности, то вполне естественно, что в проводе могут быть только свободные электроны. В результате возникает вопрос: каким образом в проводе с постоянным током формируется на одном конце плюсовой потенциал, носителем которого являются протоны, а на другом - минусовый, носителем которого являются электроны? [270], [276], [277].

Чтобы найти ответ на выше сформулированный вопрос, проанализируем работу плазмоэлектролитической ячейки (Патент № 2157862, рис. 113). Сущность процесса работы плазмоэлектролитической ячейки (рис. 113) заключается в следующем. Так как площадь поверхности катода 1 в десятки раз меньше площади поверхности анода, то большая плотность тока на поверхности катода 1 формирует поток положительных ионов электролитического раствора, направленных к нему. В этом потоке есть и положительно заряженные протоны атомов водорода, отделившиеся от молекул воды. Они взаимодействуют с электронами, испущенными катодом, образуют атомы водорода, совокупность которых формирует в растворе, в зоне Р катода 1, плазму атомарного водорода с температурой до 5000 С (рис. 113) [270], [276], [277].

Анализируя электролитический процесс, протекающий в этой ячейке, необходимо учесть, что протоны почти всех атомов расположены в ядрах достаточно глубоко от их поверхностной зоны. Кроме того, они экранированы электронами. Исключением является атом водорода (рис. 82), представляющий собой стержень, на одном конце которого отрицательно заряженный электрон , а на другом – положительно заряженный протон . Благодаря этому, в электролитическом растворе появляются положительный и отрицательный потенциалы, генерируемые электронами и протонами атомов водорода, находящимися в составе ионов (рис. 114).

Рис. 113. Схема плазмоэлектролитической ячейки:

1-катод и входной патрубок для раствора;

2-анод в виде цилиндра; 3 - выпускной патрубок парогазовой смеси; Р-Р – зона плазмы
Новые электроны приходят в электролитический раствор из катода (-) (рис. 113, 114) и, соединяясь с протонами, образуют атомы водорода (рис. 82), а ионы несут лишние электроны к аноду (+) (рис. 113, 114).

Таким образом, отрицательно заряженные ионы собираются у анода и передают ему лишние электроны, которые движутся по проводу от плюса (+) к минусу (-). Поскольку соседство свободных электронов и свободных протонов заканчивается формированием атомов водорода, которые существуют лишь в плазменном состоянии (рис. 113, зона Р..Р), то исключается одновременное существование свободных протонов и свободных электронов в проводе, по которому течёт ток.

Рис. 114. Схема ориентации ионного кластера в электрическом поле

(, и – атомы водорода)
Этот простой пример ярко демонстрирует, что электроны движутся по проводам от плюса (рис. 113) к минусу [270], [276], [277].

Поскольку в проводах электрической цепи циркулируют только электроны, имеющие отрицательный заряд и два магнитных полюса: северный и южный, то их поведением управляют магнитные полюса магнитов генераторов электростанций.

Таким образом, анализ электролитического процесса, протекающего в электролитической ячейке (рис. 113), показывает, что в электролитическом растворе электроны движутся в составе ионов от минуса к плюсу, а в проводе от плюса к минусу.

Если источником питания является аккумулятор или батарея, то знаки плюс (+) и минус (-) принадлежат их клеммам. Тут всё понятно. А если источником постоянного напряжения является выпрямитель, подключённый к сети переменного тока, то появление плюса и минуса на клеммах выпрямителя формирует серию вопросов.

Генератор электростанции генерирует переменное напряжение, носителями которого являются только электроны. Откуда же тогда на клеммах выпрямителя появляются знаки плюс и минус? Это вопрос электрикам и электронщикам. Почему они мирятся с описанным противоречием? Но мы не имеем права игнорировать его, так как отсутствие ответа на этот вопрос формирует искажённые представления о сути процессов, протекающих в электротехнических и электронных устройствах.

Итак, наличие модели электрона (рис. 42) позволяет нам приступить к поиску ответа на поставленный вопрос. Вполне естественно, что его надо базировать на экспериментальных данных. Начнём с самого простого – изучения процесса отклонения стрелки компаса, положенного на провод или под провод, по которому течёт ток.

На рис. 115 показана электрическая схема, направления проводов которой сориентированы плюсовыми концами на юг (S), а минусовыми - на север (N). При отсутствии тока в проводе направление стрелок компасов А, В, С и D совпадают с направлением правого и левого проводов на север N. При включении тока вокруг провода возникает магнитное поле и стрелки компасов отклоняются [276].


Рис. 115. Схема эксперимента по формированию магнитного поля электронами ,

движущимися по проводу
Когда электроны движутся по проводу в направлении с юга (S) на север (N), то стрелка компаса A, расположенного над проводом, отклоняется вправо, а стрелка компаса B, расположенного под проводом, – влево (табл. 43). Из этих результатов следует, что магнитное поле вокруг провода закручено против хода часовой стрелки и имеет магнитный момент . Наличие модели электрона (рис. 42) с известным направлением вектора его магнитного момента даёт нам основание полагать, что магнитное поле вокруг провода формируется совокупностью магнитных полей электронов, сориентированных вдоль провода таким образом, что направления векторов магнитного момента каждого электрона совпадают с направлением вектора магнитного момента поля, образующегося вокруг провода (рис. 115 и 116).
Таблица 43. Углы отклонения стрелок компасов A и B при различных токах (рис. 115)


Ток, I

, град.

, град

1,0 А

34,0

33,0

2,0 А

48,0

50,0

3,0 А

57,0

58,0


Те же электроны, которые движутся по правому проводу с севера (N) на юг (S), формируют вокруг него противоположно направленное магнитное поле и стрелки аналогичных компасов С и D отклоняются противоположно отклонению стрелок компасов А и В (рис. 115).

На рис. 116 представлены схемы магнитных полей вокруг проводов. Вполне естественно, что эти поля формируют электроны, движущиеся по проводам (рис. 115). Из схемы магнитного поля вокруг провода (рис. 115, а , 116, а) следует, что оно может быть сформировано лишь в том случае, если северные магнитные полюса электронов (рис. 42) направлены вверх, в сторону минусового конца провода, а южные - вниз, в сторону плюсового конца провода (рис. 115, а).






Рис. 116. Схемы движения электронов в проводе от плюса (+) к минусу (-) и формирования на его концах южного (S) и северного (N) магнитных полюсов и магнитного поля вокруг провода: а) электроны ориентированы вверх; b) электроны ориентированы вниз
На рис. 116, b) электроны движутся вниз и формируют вокруг провода магнитное поле (рис. 116, b), направление которого противоположно направлению магнитного поля вокруг провода, когда электроны движутся вверх (рис. 116, а) Это означает, что плюсовой конец провода эквивалентен южному магнитному полюсу (S), а минусовой – северному (N) (рис. 116) [270], [276], [277].

Из этого эксперимента следует, что магнитное поле вокруг провода при такой его ориентации закручено против хода часовой стрелки и имеет магнитный момент .

Неопровержимость этого факта подтверждена ещё в 1984 году другим элементарным экспериментом, поставленным инженером А.К Сухвал [287]. Он взял подковообразный магнит из электромагнитного материала с напряжённостью магнитного поля порядка 500 Э и присоединил к его полюсам щупы чувствительного микроамперметра, который начал показывать ток порядка 0,10-0,20 (рис. 117).

Рис. 117. Эксперимент инженера А.К. Сухвал [287]
При этом плюсовой щуп микроамперметра подсоединялся к южному полюсу S магнита, а минусовой - к северному N. Это убедительное доказательство движения электронов по проводам микроамперметра от плюса к минусу, а точнее от южного магнитного полюса к северному. Особо отметим, что эту информацию мы получили 15.06.09, то есть значительно позже того, как описали процесс движения электронов от плюса к минусу и многократно опубликовали его.

Итак, результаты эксперимента, представленные на рис. 115 и в табл. 43, показывают, что направление магнитного поля, формирующегося вокруг провода, совпадает с направлением вращения свободных электронов в нём (рис. 115, 116), поэтому направление тока совпадает с направлением движения электронов [270], [276], [277].

Таким образом, направления силовых линий магнитного поля, образующегося вокруг провода с током, соответствуют такой ориентации свободных электронов в нём, при которой они движутся от плюса к минусу, ориентируясь так, что южные полюса магнитных полей электронов оказываются направленными к плюсовому концу провода, а северные - к минусовому (рис. 115, 116).

Этот простой пример ярко демонстрирует, что если источником питания является аккумулятор или батарея, то электроны движутся по проводам от плюсовой клеммы аккумулятора или батареи (рис. 115, 116) к минусовой. Такая картина полностью согласуется со структурой электронов (рис. 42) и однозначно доказывает, что свободные электроны провода с постоянным напряжением повёрнуты южными магнитными полюсами к положительному концу провода, а северными – к отрицательному. В этом случае не требуется присутствие в проводах свободных протонов для формирования положительного потенциала, так как свободные электроны провода формируют на его концах не разноимённые электрические заряды, а разноимённые магнитные полюса.

Из новых представлений о поведении электронов в проводе следует необходимость заменить представления о плюсовом и минусовом концах проводов сети с постоянным напряжением на концы с северным и южным магнитными полюсами. Однако, процесс реализации этой необходимости будет длительный. Но он, как мы увидим дальше, неизбежен, так как углубление представлений о реальных электродинамических процессах невозможно без новых условностей в обозначении концов электрических проводов.

Таким образом, экспериментальная информация, которую мы привели, позволяет сформулировать первые предположения (постулаты) о структуре электрона и его движении по проводам. Для этого обратим внимание на то, что экспериментальный провод сориентирован с юга (S) на север (N) и южный конец этого провода подключён к плюсовой (+) клемме генератора (G) постоянного тока (возможно подключение и к плюсовой клемме выпрямителя).

Итак, формулируем постулаты. Первый - электроны, движутся по проводу от плюса (+) к минусу (-) . Второй – электроны имеют вращающуюся электромагнитную структуру. Третий – электроны вращаются против часовой стрелки и имеют собственные магнитные моменты . Четвёртый - магнитные поля движущихся и вращающихся электронов формируют суммарное магнитное поле, которое выходит за пределы провода. Направление вектора магнитного момента вокруг провода совпадает с направлениями векторов магнитных моментов электронов (рис. 116).
14.2. Электроны в проводе с постоянным напряжением
Модель электрона, представленная на рис. 42, позволяет описать его поведение в проводе с постоянным напряжением (рис. 118) [276].

Чистое постоянное напряжение V (рис. 118) имеют батареи и аккумуляторы. Однако, этим понятием обозначают и выпрямленное переменное напряжение, поэтому при анализе поведения электрона в проводе надо учитывать этот факт.


Рис. 118. Схема движения электронов в проводе с постоянным напряжением от южного полюса S (+) к северному полюсу N (-) и формирования ими постоянного

во времени (t) напряжения V.
Схема ориентации электронов при их движении вдоль провода с постоянным напряжением показана на рис. 118. Она следует из структуры электрона (рис. 42) и магнитного поля, формирующегося вокруг проводника с постоянным напряжением (рис. 116). Как видно (рис. 118), электроны выстраиваются так, что векторы их магнитных моментов оказываются направленными от плюса к минусу. Таким образом, южные полюса S всех свободных электронов в проводе с постоянным напряжением оказываются сориентированными к плюсовому () концу провода. Северные полюса N всех свободных электронов оказываются сориентированными к другому концу провода () (рис. 118).

Чтобы понимать основания для введения представлений о том, что плюсовой конец провода соответствует южному магнитному полюсу, а минусовый – северному, надо иметь в виду, что в проводе нет свободных протонов, поэтому некому в нём формировать положительный знак заряда. Есть только свободные электроны, а они имеют один знак заряда, но два магнитных полюса: южный (S) и северный (N).

Дальше мы увидим, как из такой условности вытекают следствия, объясняющие такое обилие электрических эффектов, что данная гипотеза уверенно завоёвывает статус постулата [270], [276], [277].

Анализируя описываемый процесс движения свободного электрона в проводе, надо иметь представления о разнице между размерами атомов и электронов, которые оказываются в промежутках между атомами. Примерная разница известна. Размеры электронов , а размеры атомов . Тысячекратная разница в размерах - достаточное условие для перемещения электронов в проводе.

Тем не менее, заряды и магнитные поля свободных электронов не безразличны для зарядов и магнитных полей электронов атомов. Они оказываются достаточными, чтобы, воздействуя на валентные и другие связанные электроны, заставлять их излучать фотоны.

Таким образом, приложенное постоянное напряжение не только перемещает свободные электроны вдоль провода, но генерирует фотоны, нагревающие провод. Чем больше приложенное напряжение, тем больше скорость движения электронов в проводе и интенсивнее их действие на связанные электроны, которые излучают фотоны с большей энергией.

Нетрудно видеть, что переменное напряжение заставит электроны вращаться так, что концы векторов магнитных моментов электронов и общих моментов , а также спинов будут описывать окружности. Изменение напряжённости магнитного поля возникающего при этом вокруг провода (рис. 119), принимает синусоидальный характер.
14.3. Электроны в проводе с переменным напряжением
Сейчас мы увидим, что изменение знака амплитуды синусоидального напряжения – результат изменения направления электронов в проводе в интервале одного периода колебаний, но не знака электрической полярности. Последовательность этих изменений представлена на рис. 119, a, b, c, d и e. Из них и следует закон формирования синусоидального характера изменения напряжения [276].

Вполне естественно предположить, что при максимальном положительном напряжении все свободные электроны в проводе ориентированы одинаково и векторы их магнитных моментов и спинов направлены в сторону движения электронов вдоль провода (рис. 119, а) от южного полюса S (плюса) к северному N (минусу). В этот момент напряженность магнитного поля вокруг провода максимальна. Схема поворота векторов спинов и магнитных моментов электронов на и падение напряжения до нуля представлена на рис. 119, b. Вполне естественно, что в этом случае магнитное поле вокруг провода (рис. 116) отсутствует и напряжение равно нулю (рис. 119, b).

Когда векторы спинов и магнитных моментов электронов повернутся на от исходного положения, то полюса магнитной полярности на концах провода и направление магнитного поля вокруг провода (рис. 116, а, b) поменяются на противоположные, а амплитуда напряжения V примет максимальное отрицательное значение (рис. 119, с).

Через следующие четверть периода направления векторов магнитных моментов и спинов электронов окажутся перпендикулярными оси провода (рис. 119, d). Магнитное поле вокруг провода (рис. 116) в этот момент исчезает, а величина напряжения V будет равна нулю (рис. 119, d).

Векторы магнитных моментов и спинов свободных электронов займут исходную позицию (рис. 119, а) через следующие четверть периода (рис. 119, е). В этот момент направление магнитного поля вокруг провода окажется соответствующим исходному положению (рис. 119, а) и амплитуды напряжения и напряжённости магнитного поля вокруг провода (рис. 116, а) максимальны. Так ведут себя свободные электроны в проводах, формируя синусоидальные законы изменения напряжения, тока и напряжённости магнитного поля вокруг провода [276].

Рис. 119. Схемы изменения направления векторов магнитных моментов и спинов свободных электронов в проводе с переменным напряжением
Это даёт нам основание написать уравнения их изменения в таком виде:
(347)
(348)
. (349)
Вполне естественно предположить, что описанным процессом изменения ориентации электронов в проводах управляют магнитные полюса магнитов первичных источников питания, например, генераторов электростанций.

Главная особенность описанного процесса – синхронность синусоидального изменения напряжения U, тока I и напряженности H магнитного поля вокруг провода. Описанный процесс показывает, что при переменном напряжении количество электронов в рассматриваемом сечении провода не изменяется, а изменяется лишь их направление, которое изменяет направление магнитного поля вокруг провода, характеризуемого вектором (рис. 116).

Из описанного процесса поведения электронов в проводе с переменным напряжением обычной сети следует, что свободные электроны меняют в ней своё направление с частотой сети, равной 50 Гц.

Если сравнивать поведение свободных электронов в проводе с постоянным напряжением (рис. 118), где электроны не меняют свою ориентацию, то потери энергии в проводе с постоянным напряжением меньше, чем с переменным. Это хорошо известный факт.

В проводе с переменным напряжением (рис. 119) расходуется дополнительная энергия на изменения направлений векторов спинов и магнитных моментов электронов, на периодичность формирования магнитного поля вокруг провода. Далее, резкое изменение направления векторов спинов и магнитных моментов свободных электронов изменяет скорость их вращения относительно своих осей, что приводит к излучению фотонов. При этом надо иметь в виду, что меняющаяся полярность магнитного поля вокруг провода действует не только на свободные электроны, но и на валентные электроны атомов в молекулах и электроны атомов, не имеющие валентных связей. В результате они тоже могут излучать фотоны и увеличивать потери энергии [276].

Наиболее простой пример явного проявления явления потерь энергии – спираль электрической лампочки накаливания или спираль электрической плиты. Переменные магнитные поля вокруг нитей спирали значительно больше шага спирали. В результате они перекрывают друг друга и таким образом увеличивают интенсивность действия на электроны атомов материала спирали и они, возбуждаясь, начинают излучать фотоны, накаливая спираль электрической печки или лампочки. При этом длина волны излучаемых фотонов (цвет спирали) зависит от приложенного напряжения и величины тока. Чем они больше, тем больше электронов проходит в единицу времени в каждом сечении провода спирали, которые увеличивают напряжённость магнитного поля, возникающего вокруг провода спирали, а это поле в свою очередь интенсивнее действует на электроны, заставляя их терять больше массы в одном акте излучения фотонов.

Известно, чем больше масса фотона, тем меньше длина его волны. Следовательно, процессом изменения длины волны излучаемых фотонов можно управлять, изменяя интенсивность воздействия магнитных полей на электроны. Эта экспериментально разработанная процедура достигла, можно сказать, предельного совершенства в современной электронике, но теоретики далеки от понимания тонкостей этого совершенства.

Дальше мы увидим, что при появлении в электрической цепи ёмкости и индуктивности синхронность изменения напряжения, тока и напряжённости магнитного поля нарушается.