1. /Биотехнология/Вопросы биотехнология.doc 2. /Биотехнология/УП Биотехнология контр.doc | Вопросы к зачету по биотехнологии Е. В. Макаревич промышленная микробиология и основы биотехнологии |
скачать doc
Е.В. МАКАРЕВИЧ
ПРОМЫШЛЕННАЯ МИКРОБИОЛОГИЯ
И ОСНОВЫ БИОТЕХНОЛОГИИ
Федеральное агентство по рыболовству
Федеральное государственное образовательное учреждение
высшего профессионального образования
«Мурманский государственный технический университет»
Е.В. МАКАРЕВИЧ
ПРОМЫШЛЕННАЯ МИКРОБИОЛОГИЯ
И ОСНОВЫ БИОТЕХНОЛОГИИ
Допущено Ученым Советом МГТУ в качестве учебного пособия
для студентов по дисциплине «Микробиология»
для специальностей 020201.65 «Биология», 020803.65 «Биоэкология»,
020209.65 «Микробиология»
Мурманск, 2009
УДК
ББК
Рецензенты: | Заведующая испытательной лабораторией микробиологии ФГУ Мурманского центра стандартизации, метрологии и сертификации Молчановская Т.И.; заведующий кафедрой географии и экологии Мурманского государственного педагогического университета, канд. биол. наук Николаев А.В. |
Макаревич, Е.В. Промышленная микробиология и основы биотехнологии: Учебное пособие для студентов вузов/Елена Викторовна Макаревич. – Мурманск: МГТУ. – 2009. – с.
Учебное пособие предназначено для студентов вузов, обучающихся по специальностям 020201.65 «Биология», 020803.65 «Биоэкология», 020209.65 «Микробиология».
В основу настоящего учебного пособия положены сведения из ряда отраслей наук, описывающих функционирование и перспективы развития современных отраслей промышленной микробиологии и биотехнологии. Учебное пособие содержит сведения о становлении биотехнологии как науки и сферах использования микроорганизмов в промышленности. В учебном пособии отражены представления о биообъектах и основах генетической модификации микрообъектов, об эндогенной и экзогенной регуляции их продуктивности и управлении биосинтезом; предоставлены научные основы и технологические аспекты применения микроорганизмов, сведения о способах решения проблем медицины, сельского хозяйства, экологии и охраны окружающей среды методами биотехнологии.
The data from the different scientific branches about functioning and prospects of development of the modern fields of industrial microbiology and biotechnology are put in the basis of the manual. The manual consists of the data about history of biotechnology and the industrial using of microorganisms. The manual also keeps the data about bioobject's and the bases of microobject's genetic updating, about endogenous and exogenous regulation of their efficiency and biosynthesis management; scientific bases and technological aspects of microorganism's application; the decision of medicine, agriculture, ecology and environmental protection problems by using biotechnological methods.
Учебное издание
Макаревич Елена Викторовна
ПРОМЫШЛЕННАЯ МИКРОБИОЛОГИЯ И ОСНОВЫ БИОТЕХНОЛОГИИ
ВВЕДЕНИЕ
В основе промышленной микробиологии лежат закономерности жизнедеятельности прокариотных и эукариотных микроорганизмов, как основных объектов технологий. Промышленная микробиология, объединяющая фундаментальную науку (получение новых генно-инженерных штаммов сверхпродуцентов) и технологию (крупномасштабное выращивание микроорганизмов), исследует микроорганизмы и процессы, приводящие к образованию полезных веществ или продуктов с их помощью. К задачам промышленной микробиологии можно также отнести разработку принципов использования микроорганизмов для организации технологических процессов пищевых производств (хлеба, пива, вина, молочнокислых продуктов и т.д.), для очистки окружающей среды от различных антропогенных загрязнений, в биометаллургии.
Промышленная микробиология является частью общей науки биотехнологии. Термин биотехнология включает составляющие «bios», «technos», «logos» греческого происхождения (от греч. «биос» – жизнь, «техне» – искусство, мастерство, умение и «логос» – понятие, учение) и является более широким понятием. Биотехнология (biotechnology) – наука, изучающая возможности использования организмов, биологических процессов и систем в производстве, включая превращение различных видов сырья в высококачественные продукты. В основе современной биотехнологии лежит перенос единиц наследственности (генов) из одного организма в другой, осуществляемый методами генной и клеточной инженерий в сочетании с микробиологическим синтезом и широким набором методов биохимии, биоорганической химии и биопроцессорной инженерии. Целью переноса генов из одного организма в другой является создание нового продукта или получение уже известного продукта в промышленных масштабах. Биотехнология на самом деле не что иное, как название, данное набору технических приемов (подходов) и процессов, основанных на использовании для этих целей биологических объектов. Современная биотехнология основана главным образом на культивировании микроорганизмов (бактерий и микроскопических грибов), животных и растительных клеток.
Использование свойств микроорганизмов, важных для человеческой практики, не является чем-то новым, ранее не известным, и представляет собой набор технологических приемов, корни которых появились тысячи лет тому назад.
Практика применения механизмов микробного метаболизма включает многие традиционные процессы, давно известные и используемые человеком. К одним из самых древних областей человеческой деятельности относятся хлебопечение, виноделие и пивоварение, которые в основе своей имеют не что иное, как жизнедеятельность микроорганизмов – хлебопекарных и винных дрожжей. Сюда же можно отнести разнообразные способы утилизации отходов, получение кисломолочных продуктов, сыров с помощью молочнокислых бактерий, пищевого уксуса с помощью уксуснокислых бактерий, а также различных органических кислот и растворителей, производство которых долгое время осуществлялось только помощи бактерий и не имело дублера в химической промышленности. Все перечисленные процессы на протяжении многих лет использовались и совершенствовались эмпирически без достаточных теоретических знаний о них.
Работы великого французского ученого Луи Пастера (1822–1895) заложили фундамент практического использования достижений микробиологии и биохимии в традиционных биотехнологиях (пивоварение, виноделие, производство уксуса) и ознаменовали начало нового, научного периода применения микроорганизмов. Для этого этапа характерно развитие промышленной микробиологии, в особенности ферментационных процессов в промышленных масштабах. Были разработаны процессы производства ацетона, глицерина путем ферментации. Интенсивно изучались основные группы микроорганизмов – возбудителей процессов брожения, исследовались биохимические особенности данных процессов.
Развитие современной биологии, внедрение в нее других естественнонаучных дисциплин, таких как физика, химия и математика, сделали возможным описание жизненных процессов на новом качественном уровне – на уровне клетки и молекулярных взаимодействий.
Именно существенные успехи в фундаментальных исследованиях в области биохимии, молекулярной генетики и молекулярной биологии, достигнутые во второй половине прошлого столетия, создали реальные предпосылки управления различными механизмами жизнедеятельности клетки. Сложившаяся благоприятная ситуация в биологии явилась мощным толчком в формировании современной промышленной микробиологии и биотехнологии, весьма важных областей практического приложения результатов фундаментальных наук.
Бурное развитие технологий практического применения свойств микроорганизмов связано, прежде всего, с эрой антибиотиков, которая наступила в 40-50-е годы прошлого столетия. Производство антибиотиков оказалось чрезвычайно наукоемкой отраслью, которая потребовала интеграции усилий микробиологов, биохимиков, генетиков, а также привлечения всех передовых достижений соответствующих отраслей науки. В тот период были созданы микробиологические производства, оснащенные современным оборудованием, разработаны прогрессивные биотехнологии, проведена широкая селекция микроорганизмов – продуцентов антибиотиков и получены мутантные штаммы с гиперпродукцией этих веществ. Расширение знаний об антибиотиках, равно как и развитие антибиотической промышленности, стало отличной школой биотехнологии и привело к существенному повышению культуры микробиологических производств.
Новый импульс биотехнология получила в середине 70-х годов благодаря появлению такой отрасли, как генетическая инженерия. Основой, обеспечивающей благоприятную ситуацию для появления нового этапа биотехнологии, явились революционные открытия и разработки:
доказательства роли нуклеиновых кислот в хранении и передаче наследственной информации в биологических системах (имеются в виду индивидуальные клетки и отдельные организмы);
расшифровка универсального для всех живых организмов генетического кода;
раскрытие механизмов регуляции функционирования генов в процессе жизни одного поколения организмов;
совершенствование существовавших и разработка новых технологий культивирования микроорганизмов, клеток растений и животных.
Как следствие, явилось создание и развитие методов генетической и клеточной инженерии, с помощью которых искусственно создаются новые высокопродуктивные формы организмов, пригодные для использования в промышленных масштабах.
Началом промышленной генной инженерии принято считать 1980 год, когда в США был выдан первый патент на генно-инженерный штамм микроорганизма, способного разлагать нефть. К настоящему времени в области генной инженерии зарегистрировано около 600 патентов, что отражает интенсивность ее развития.
Внедрения в производство разработок генной инженерии в микробиологические производства вывели биотехнологию на новый уровень ее развития, позволяющий сознательно и целенаправленно управлять сложными клеточными процессами (табл. 1). Во-первых, существенно повысилась продуктивность промышленных микроорганизмов – продуцентов классических продуктов путем введения дополнительных генов, увеличения их количества или активности. Во-вторых, вводя в микробную клетку новые гены, удалось изменить питательные потребности микроорганизма. Далее микроорганизмы «научили» синтезировать несвойственные им вещества и таким образом увеличили разнообразие биотехнологической продукции. Некоторые белки человека, клонированные в микробной клетке, в том числе инсулин, интерфероны, интерлейкины, находят в настоящее время терапевтическое применение. Наконец, подверглась пересмотру вся логика селекции микроорганизмов-продуцентов. Так, если раньше сначала искали активный штамм микроорганизма и затем создавали конкретную биотехнологию с учетом физиологических свойств и питательных потребностей продуцента, то теперь можно взять приспособленный к условиям производства штамм и ввести в него генную конструкцию, которая обеспечит эффективный синтез целевого продукта. Первый коммерческий продукт – человеческий инсулин, продуцируемый бактерией, был разрешен для клинического использования в 1982 г.
Таблица 1
Основные достижения молекулярной биологии и генной инженерии, отразившиеся на формировании современной биотехнологии
Дата | Событие |
1944 | Эвери, МакЛеод и МакКарти показали, что генетический материал представляет собой ДНК |
1953 | Уотсон и Крик определили структуру молекулы ДНК |
1961 | Учрежден журнал "Biotechnology and Bioengineering" |
1961–1966 | Расшифрован генетический код |
1969 | Впервые синтезирован фермент |
1970 | Выделена первая рестрицирующая эндонуклеаза |
1972 | Корана и др. синтезировали полноразмерный ген тРНК |
1973 | Бойер и Коэн положили начало технологии рекомбинантных ДНК |
1975 | Колер и Мильштейн описали получение моноклональных антител |
1976 | Изданы первые руководства, регламентирующие работы с рекомбинантными ДНК |
1976 | Разработаны методы определения нуклеотидной последовательности ДНК |
1978 | Фирма Genentech выпустила человеческий инсулин, полученный с помощью E. coli |
1980 | Верховный суд США, слушая дело Даймонд против Чакрабарти, вынес вердикт, что микроорганизмы, полученные генноинженерными методами, могут быть запатентованы |
1981 | Поступили в продажу первые автоматические синтезаторы ДНК |
1981 | Создано первое трансгенное животное (мышь) |
1981 | Разрешен к применению в США первый диагностический набор моноклональных антител |
1982 | Разрешена к применению в Европе первая вакцина для животных, полученная по технологии рекомбинантных ДНК |
1983 | Для трансформации растении применены гибридные Ti-плазмиды |
1984 | Разработана технология применения анализа ДНК для идентификации человека, с 1985 года она используется в работе правоохранительных органов |
1986 | Впервые с помощью генной инженерии создана вакцина (гепатит В) и первое лекарство против рака (интерферон) |
1987 | Первые полевые испытания генетически модифицированных сельскохозяйственных растений (помидор, устойчивый к вирусным заболеваниям) |
1988 | Создан метод полимеразной цепной реакции (ПЦР) |
1990 | В США утвержден план испытаний генной терапии с использованием соматических клеток человека |
1990 | Официально начаты работы над проектом "Геном человека" |
1993 | Генетически измененные продукты допущены на прилавки магазинов мира. Практически сразу начинается международная кампания, требующая их запрещения |
1994–1995 | Опубликованы подробные генетические и физические карты хромосом человека. |
1996 | Определена нуклеотидная последовательность всех хромосом Saccharomyces cerevisiae |
1997 | Клонировано млекопитающее из дифференцированной соматической клетки – знаменитая шотландская "овечка Долли" |
1998 | Впервые создана полная генетическая карта животного (дождевой червь). |
Примерно к тому же времени относится энергичное развитие клеточной инженерии. Микробный продуцент был пополнен новым источником получения полезных веществ – культурой изолированных клеток и тканей растений и животных. На этой основе были созданы новые приемы биотехнологии, а также разработаны принципиально новые методы селекции эукариот. Особенно больших успехов удалось достичь в области микроклонального размножения растений, а также получения и использования трансгенных растений и животных.
Абсолютно новым направлением является так называемая инженерная энзимология, возникшая вследствие развития современных методов изучения структуры и синтеза белков-ферментов и выяснения механизмов функционирования и регуляции активности этих соединений (важных элементов клетки). Достижения в этой области позволяют направленно модифицировать белки различной сложности и специфичности функционирования, разрабатывать создание мощных катализаторов промышленно ценных реакций с помощью высоко стабилизированных иммобилизованных ферментов.
Условно промышленные микробиологические и биотехнологические процессы можно разделить на шесть типов:
основанные на использовании метаболических особенностей живой биомассы микроорганизмов (производство традиционных пищевых продуктов – пива, вина, молочнокислых продуктов и т.д., утилизация отходов агропромышленного комплекса, очистка сточных вод, выделение металлов из руд);
основанные на получении и использовании живой и инактивированной биомассы микроорганизмов; например, получение пекарских, винных и кормовых дрожжей, вакцин, белково-витаминных концентратов (БВК), средств защиты растений, заквасок для получения кисломолочных продуктов;
основанные на выделении продуктов микробного биосинтеза, к числу которых относятся получение первичных метаболитов (ферментов, аминокислот, витаминов) и вторичных метаболитов (антибиотиков, гормонов, спиртов, органических кислот, растворителей); трансформация веществ с помощью микроорганизмов;
основанные на методах инженерной энзимологии (производство иммобилизованных ферментов);
основанные на методах генной инженерии (получение рекомбинантных ДНК, трансгенных микроорганизмов, растений и животных, синтез соматотропина, инсулина, интерферонов с помощью генетически модифицированных микроорганизмов);
основанные на методах клеточной инженерии (культивирование клеток и тканей растений, клональное размножение растений; использование культур клеток растений в качестве продуцентов биологически активных веществ).
ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ:
История развития биотехнологии и основные ее аспекты.
Охарактеризуйте полидисциплинарность современных биотехнологий
Назовите основные области применения микроорганизмов в современной биотехнологии
Назовите основные аспекты современной биотехнологии (биологические, химические, технологические).
Какие периоды в развитии промышленной микробиологии и биотехнологии Вам известны?
Каков вклад Луи Пастер в формировании современных представлений о возможностях использования микроорганизмов?
Развитие каких наук вывело биотехнологию на новый уровень?
Охарактеризуйте современный период в развитии биотехнологии.
Каковы перспективы развития современной промышленной микробиологии и биотехнологии?
Каковы задачи промышленной микробиологии?
ГЛАВА 1. ХАРАКТЕРИСТИКА МИКРООРГАНИЗМОВ - ОБЪЕКТОВ БИОТЕХНОЛОГИЧЕСКИХ ПРОИЗВОДСТВ
К объектам промышленной микробиологии и биотехнологии можно отнести бактерии, дрожжи, микроскопические (плесневые) грибы, культуры клеток растений и животных, а также субклеточные структуры (вирусы, плазмиды, ДНК митохондрий и хлоропластов, ядерная ДНК).
Клеточные формы, включающие прокариотические и эукариотические организмы, отличаются по многим принципиальным признакам. Однако общими, важными в технологическом аспекте, свойствами микроорганизмов являются:
высокая скорость обменных процессов. Это связано с большим отношением поверхности обмена к объему клетки. Для микроорганизмов вся поверхность клетки является поверхностью обмена. Так как клетки бактерий самые мелкие, то они растут и развиваются быстрее всех микроорганизмов, за ними следуют дрожжи и грибы. В свою очередь, скорость обменных процессов у микроорганизмов в десятки и сотни тысяч раз выше, чем у животных. Например, в организме одного быка весом в 500 кг за 24 часа образуется примерно 0,5 кг белка; за это же время 500 кг дрожжей могут синтезировать более 50 000 кг белка;
пластичность обмена – высокая способность к адаптации (приспособлению к новым условиям существования). Несравненно большая гибкость обменных процессов у микроорганизмов по сравнению с растениями и животными объясняется их способностью синтезировать индуцибельные ферменты, т.е. ферменты, которые образуются в клетке только при наличии в среде соответствующих веществ;
высокая степень изменчивости. Более высокая степень изменчивости микроорганизмов по сравнению с макроорганизмами связана с тем, что большинство микроорганизмов являются одноклеточными организмами. На отдельную клетку воздействовать легче, чем на организм, состоящий из множества клеток. Высокая степень изменчивости, быстрый рост и развитие, высокая скорость обменных процессов, образование многочисленного потомства – все эти свойства микроорганизмов делают их чрезвычайно удобными объектами для генетического анализа, так как опыты можно проводить в короткие сроки на огромном числе особей.
1.1. Строение прокариотической (бактериальной) клетки
Характерной особенностью прокариот является отсутствие системы внутриклеточных мембран.
| Рис. 1.1. Схема строения прокариотической клетки: 1 – клеточная стенка; 2 – цитоплазматическая мембрана; 3 – мезосомы; 4 – цитоплазма; 5 – нуклеоид; 6 – рибосомы; 7 – запасные вещества; 8 – жгутики; 9 – базальное тельце; 10 – тилокоиды; 11 – капсула |
Клеточная стенка придает форму клетке, предохраняет клетку от внешних воздействий (является механическим барьером клетки), защищает клетку от проникновения в нее избыточного количества влаги.
По химическому составу и строению клеточной стенки бактерии делятся на грамположительные (Грам+) и грамотрицательные (Грам-).
Клеточная стенка Грам+ состоит из пептидогликана – муреина (до 90 –95 %), тейхоевых кислот, полисахаридов. Она имеет однослойную структуру, плотно прилегает к цитоплазматической мембране.
У Грам- бактерий в составе клеточной стенки муреина мало (5 – 10 %), тейхоевые кислоты отсутствуют, в больших количествах содержатся липопротеиды и липополисахариды.
Клеточная стенка Грам- бактерий значительно тоньше, чем у Грам+, но имеет двухслойную структуру. Наружный слой состоит из липопротеидов и липополисахаридов, которые препятствуют проникновению токсических веществ. Поэтому Грам- бактерии более устойчивы к действию антибиотиков, ядовитых химических веществ и борьба с этими микроорганизмами в пищевых производствах менее эффективна, чем с Грам+ бактериями.
Цитоплазматическая мембрана (ЦПМ) играет важную роль в питании клетки, обладает избирательной проницаемостью. Состоит из белково-липидного комплекса, имеет трехслойную структуру. На внешней стороне мембраны расположены белки-переносчики, осуществляющие транспорт питательных веществ в клетку, а на внутренней стороне расположены окислительно-восстановительные и гидролитические ферменты. Между двумя белковыми слоями располагается фосфолипидный слой.
Мезосомы – мембранные образования, выпячивания ЦПМ. Благодаря им увеличивается поверхность обмена клетки. Участвуют в энергетические процессах, а также принимают участие в процессах деления (размножения) клетки.
Цитоплазма – внутриклеточное содержимое, полужидкий коллоидный раствор. Здесь содержится до 70 – 80 % воды от массы клетки, ферменты, субстраты питания и продукты обмена веществ клетки. В цитоплазме располагаются все компоненты прокариотической клетки.
Нуклеоид – носитель наследственной информации, единственная хромосома прокариотической клетки, принимает участие в размножении. Это компактное образование, занимающее центральную область в цитоплазме и состоящее из двухцепочной спирально закрученной нити ДНК, замкнутой в кольцо.
Многие бактерии, наряду с хромосомной ДНК, содержат и внехромосомную ДНК, также представленную двойными спиралями, замкнутыми в кольцо. Эти автономно реплицирующиеся элементы ДНК называют плазмидами.
Рибосомы – небольшие гранулы, содержащие РНК (60 %) и белок (40 %). На рибосомах осуществляется синтез клеточных белков.
Запасные вещества. Состоят из полисахаридных гранул (гликогена гранулезы), включений серы, жировых капель (содержат поли--масляную кислоту), волютина (полифосфатные гранулы).
У подвижных форм бактерий имеются жгутики (8), длинные нити состоящие из структурного белка – флагелина. Прикреплены жгутики к ЦПМ с помощью двух пар дисков основания – базального тельца (9).
У фотосинтезирующих бактерий в клетках имеются тилакоиды (10), с помощью которых осуществляется фотосинтез.
Слизистые виды бактерий имеют капсулу (11) или слизистый чехол, чаще состоящий из полисахаридов, реже – из полипептидов. Это дополнительный защитный барьер клетки, источник запасных питательных веществ.
1.2. Размножение бактерий
Для прокариот характерно деление клетки на 2 части (бинарное деление).
При делении кольцевая ДНК прикрепляется к цитоплазматической мембране, расшнуровывается. При этом образуются 2 цепочки нуклеотидов, которые комплементарно достраиваются, в результате чего образуются две кольцевые двухцепочных молекулы ДНК.
У подавляющего числа грамположительных бактерий деление происходит ровно пополам с помощью поперечной перегородки (сеты), которая образуется за счет выпячивания внутрь клетки цитоплазматической мембраны.
У грамотрицательных бактерий деление происходит путем образования перетяжки (цитоплазматическая мембрана и клеточная стенка прогибаются до слияния с противоположной поверхностью клетки).
Незначительная часть бактерий размножается почкованием (стебельковые бактерии).
1.3. Строение эукариотической клетки
| Рис. 1.2. Схема строения эукариотической клетки: 1 – клеточная стенка; 2 – цитоплазматическая мембрана; 3 – цитоплазма; 4 – ядро; 5 – эндоплазматическая сеть; 6 – митохондрии; 7 – комплекс Гольджи; 8 – рибосомы; 9 – лизосомы; 10 – вакуоли |
Клеточная стенка эукариотической клетки, в отличие от клеточной стенки прокариот состоит главным образом из полисахаридов. У грибов основным является азотсодержащий полисахарид хитин. У дрожжей 60 – 70 % полисахаридов представлены глюканом и маннаном, которые связаны с белками и липидами. Функции клеточной стенки эукариот те же, что и у прокариот.
Цитоплазматическая мембрана (ЦПМ) также имеет трехслойную структуру. Поверхность мембраны имеет выпячивания, близкие к мезосомам прокариот. ЦПМ регулирует процессы обмена веществ клетки.
У эукариот ЦПМ способна захватывать из окружающей среды большие капли, содержащие углеводы, липиды и белки. Это явление называется пиноцитозом. ЦПМ эукариотической клетки способна также захватывать из среды твердые частицы (явление эндоцитоза). Кроме того, ЦПМ ответственна за выброс в среду продуктов обмена.
Ядро отделено от цитоплазмы двумя мембранами, в которых имеются поры. Поры у молодых клеток открыты, служат они для миграции из ядра в цитоплазму предшественников рибосом, информационной и транспортной РНК. В ядре в нуклеоплазме имеются хромосомы, состоящие из двух нитевидных цепочных молекул ДНК, соединенных с белками. В ядре имеется также ядрышко, богатое матричной РНК и связанное со специфической хромосомой – ядрышковым организатором.
Основной функцией ядра является участие в размножении клетки. Это носитель наследственной информации.
В эукариотической клетке ядро – важнейший, но не единственный носитель наследственной информации. Часть такой информации содержится в ДНК митохондрии и хлоропластов.
Митохондрии – мембранная структура, содержащая две мембраны – наружную и внутреннюю, сильно складчатую. На внутренней мембране сосредоточены окислительно-восстанови-тельные ферменты. Основной функцией митохондрии является снабжение клетки энергией (образование АТФ). Митохондрии – саморепродуцирующая система, так как в ней имеется собственная хромосома – кольцевая ДНК и другие компоненты, которые входят в состав обычной прокариотической клетки.
Эндоплазматическая сеть (ЭПС) – мембранная структура, состоящая из канальцев, которые пронизывают всю внутреннюю поверхность клетки. Бывает гладкой и шероховатой. На поверхности шероховатой ЭПС располагаются рибосомы, более крупные, чем рибосомы прокариот. На мембранах ЭПС расположены также ферменты, осуществляющие синтез липидов, углеводов и ответственных за транспорт веществ в клетке.
Комплекс Гольджи – пакеты уплощенных мембранных пузырьков – цистерн, в которых осуществляется упаковка и транспорт белков внутри клетки. В комплексе Гольджи происходит также синтез гидролитических ферментов (место образования лизосом).
В лизосомах сосредоточены гидролитические ферменты. Здесь происходит расщепление биополимеров (белков, жиров, углеводов).
Вакуоли отделены от цитоплазмы мембранами. В запасных вакуолях содержатся запасные питательные вещества клетки, а в шлаковых – ненужные продукты обмена и токсические вещества.
1.4. Характеристика наиболее важных представителей различных классов грибов, их размножение
Грибы относятся к царству Mycota, которое делится на два отдела в зависимости от наличия жесткой клеточной стенки: отдел Myxomycota (слизевики) и отдел Eumycota (истинные грибы).
В пищевой промышленности встречаются главным образом представители истинных грибов, классификация которых базируется на трех признаках:
1. Строение мицелия.
2. Наличие полового способа размножения.
3. Особенности полового размножения.
В зависимости от этих признаков отдел истинных грибов делится на 4 класса (рис.1.3).
а | б | в | г |
Рис. 1.3 Морфологические особенности грибов различных классов:
а - Mucor; б - Penicillium; в - Aspergillus; г - Alternaria
Класс фикомицетов. К этому классу относятся низшие грибы, имеющие несептированный многоядерный мицелий. К фикомицетам относятся мукоровые грибы, которые широко распространены в природе. Наибольшее значение имеют представители родов Mucor и Rhizopus.
Размножаются фикомицеты бесполым и половым путем. При бесполом размножении образуются спорангиеносцы, при половом – в результате слияния двух гиф происходит образование зиготы (зигоспоры), которая после периода покоя прорастает и образует короткую гифу со спорангием на конце. При прорастании споры происходит деление ядер.
Многоядерная цитоплазма спорангия распадается на множество спорангиеспор, которые в благоприятных условиях прорастают в мицелий.
Грибы рода Мисоr (рис.1.3, а) вызывают порчу пищевых продуктов. Отдельные представители этого рода нашли применение как продуценты ферментных препаратов, органических кислот, спиртов, каротиноидов, стероидов.
Грибы рода Rhizopus вызывают так называемую «мягкую гниль» ягод, плодов и овощей.
Класс аскомицетов. Аскомицеты (сумчатые грибы) являются высшими грибами, т.е. имеют септированный мицелий. При бесполом размножении образуются конидиеносцы с экзоспорами.
При половом размножении образуется аск (сумка) со спорами. Начинается половое размножение с образования аскогонов, несущих трихогину – трубочку, по которой в аскогон попадают мужские ядра. Диплоидное ядро, как правило, претерпевает три деления, в результате образуются 8 аскоспор.
Существуют аскомицеты, у которых аски развиваются на специальных плодовых телах. Такие грибы называют плодосумчатые.
В группу плодосумчатых аскомицетов входят грибы родов Penicillium (рис.1.3, в) и Aspergillus (рис.1.3, б), которые являются возбудителями порчи различных пищевых продуктов, и в частности, плодов и овощей, особенно при хранении (различные гнили). Кроме того, некоторые аспергиллы являются патогенными для человека и животных, вызывают заболевания верхних дыхательных путей, слизистой рта, кожи (аспергиллез). Другие виды аспергиллов, а также гриб спорынья (паразит злаковых растений) выделяют ядовитые вещества, вызывающие пищевые отравления.
Некоторые представители пенициллов и аспергиллов нашли практическое применение. Так, отдельные представители пеницилловых грибов используются как продуценты антибиотика пенициллина в промышленных масштабах, другие – в производстве сыров «Рокфор» и «Камамбер».
Аспергиллы являются продуцентами органических кислот и применяются для промышленного получения лимонной кислоты. Многие аспергиллы используются также для получения ферментных препаратов.
К голосумчатым аскомицетам относятся грибы, аск у которых образуется непосредственно на мицелии. Типичными представителями голосумчатых грибов являются дрожжи.
Класс базидиомицетов. К этому классу относятся высшие макроскопические грибы. К базидиомицетам относятся шляпочные съедобные и ядовитые грибы (шампиньоны, сыроежки, поганки), головневые грибы (паразиты злаковых культур), трутовые грибы (разрушители древесины), ржавчинные грибы (паразиты культурных растений).
Характерной особенностью этого класса является преимущественное размножение половым способом – базидиями с базидиоспорами.
Класс дейтеромицетов. К этому классу отнесены высшие грибы, половое размножение у которых не обнаружено.
Представители этого класса размножаются вегетативным путем (кусочком мицелия или отдельными клетками – оидиями) и бесполым путем – конидиями. По форме конидии бывают шаровидные, эллипсовидные, нитевидные, серповидные, звездчатые и др.
Несовершенные грибы широко распространены в природе, некоторые являются паразитами культурных растений, вызывают порчу пищевых продуктов, являются возбудителями заболеваний кожи человека.
Грибы рода Fusarium являются возбудителями заболевания плодов и овощей (фузариоз), злаков, вызывают порчу картофеля (сухая гниль), вызывают тяжелые пищевые отравления.
Грибы рода Botrytis вызывают порчу лука, капусты, моркови, помидоров, а вместе с другими грибами – гниль сахарной свеклы.
Грибы рода Altemaria поражают корнеплоды в период хранения (черная гниль)
Представители рода Cladosporium часто обнаруживаются на пищевых продуктах, хранящихся в холодильниках.
1.5. Дрожжи. Их формы, размеры. Размножение дрожжей. Принципы классификации дрожжей
Дрожжи – высшие грибы, утратившие способность образовывать мицелий и превратившиеся в результате этого в одноклеточные организмы. Дрожжи относятся к царству грибов (Mycota), отделу истинных грибов (Eumycota). В зависимости от того, способны ли дрожжи размножаться половым путем, их можно отнести к 2-м классам: классу аскомицетов и классу дейтеромицетов. Небольшая часть дрожжей относится к классу базидиомицетов.
Так как дрожжи отличаются по своим культуральным свойствам от грибов, существуют их отдельные классификации.
Клетки дрожжей имеют овальную, яйцевидную и эллиптическую форму (рис 1.4). Несколько реже встречаются цилиндрические (палочковидные), грушевидные и лимоновидные дрожжи.
а г | б д | в е |
Рис. 1.4 Форма дрожжевых клеток:
а – стреловидная, б – серповидная, в – лимоновидная,
г – овальная, яйцевидная, д – цилиндрическая, е – грушевидная
Размеры клеток дрожжей колеблются от 2,5 до 10 мкм в поперечнике и от 4 до 20 мкм в длину. В среднем масса дрожжевой клетки составляет около 510–11 г. Формы, размеры и масса дрожжевых клеток изменяются в зависимости от условий среды, в которой они развиваются, и от возраста клеток.
Размножение дрожжей зависит от условий жизнедеятельности дрожжевой клетки и от вида дрожжей.
Вегетативное размножение. Происходит почкованием, реже – делением или почкующимся делением. Почкование – это процесс образования на клетке маленького бугорка – почки, которая постепенно увеличивается в размерах. В месте соединения почки с материнской клеткой постепенно образуется сужение – перетяжка. Когда почка достигает примерно одной трети размеров материнской клетки, ядро перемещается в перетяжку и здесь происходит его деление на 2 ядра. Одно из ядер переходит в почку, а другое остается в материнской клетке. Постепенно перетяжка ограничивает дочернюю клетку от материнской, затем слои перегородки разделяются, оставляя на материнской клетке почковой рубец. Почкованием обычно размножаются дрожжи овальной формы. Бинарное деление дрожжевой клетки происходит путем возникновения поперечной перегородки, которая, развиваясь, приводит к образованию двух дочерних клеток, идентичных родительской. Делением размножаются дрожжи цилиндрической формы. Почкующееся деление характерно для дрожжей лимоновидной формы. Вначале на полюсе возникает почка, которая после деления ядра ограничивается от материнской клетки перегородкой.
Половое размножение. Этим способом размножаются некоторые виды гаплоидных дрожжей. Перед спорообразованием такие гаплоидные клетки сливаются, в результате образуется диплоидная клетка, ядро которой делится путем мейоза с образованием четырех или восьми аскоспор. Половое размножение дрожжей осуществляется в неблагоприятных условиях.
Классификация дрожжей. Существует отдельная классификация совершенных (спорогенных) дрожжей – классификация Кудрявцева. По этой классификации дрожжи относятся к классу аскомицетов, порядку одноклеточных грибов – дрожжей, который включает три семейства: сахаромицетов, шизосахаромицетов и сахаромикодов. Семейства различаются формой клеток, способом вегетативного размножения.
Семейство сахаромицетов Представители этого семейства имеют овальную или яйцевидную форму, вегетативно размножаются почкованием. Особо важная роль принадлежит роду Saccharomyces. Главным биохимическим признаком этих дрожжей является то, что они сбраживают сахара с образованием этилового спирта и диоксида углерода. Дрожжи, используемые в промышленности, называются культурными дрожжами. Так, в хлебопекарном производстве и в производстве спирта используются верховые дрожжи рода Saccharomyces cerevisiae. Дрожжи вида Saccharomyces minor нашли применение в производстве ржаного хлеба и кваса. В пивоварении используются низовые дрожжи Saccharomyces carlsbergensis. Дрожжи-сахаромицеты имеют овальную форму, вегетативно размножаются почкованием, в неблагоприятных условиях размножаются половым путем аскоспорами. Культурные дрожжи относятся к ацидофилам, т. е. развиваются в кислой среде, оптимальное значение рН для дрожжей 4,5-5,0. В аэробных условиях они активно растут и размножаются, а в анаэробных – осуществляют спиртовое брожение (эффект Пастера). Дрожжи чувствительны к высокой концентрации растворенных в среде веществ. При высокой концентрации сахара в среде жизнедеятельность дрожжей прекращается, так как при этом увеличивается осмотическое давление среды и наступает плазмолиз клеток. Величина предельной концентрации сахара для различных рас дрожжей неодинакова. Различают дрожжи верхового и низового брожения. Дрожжи верхового брожения в стадии интенсивного брожения распределяются на поверхности сбраживаемой среды в виде довольно толстого слоя пены и остаются в таком состоянии до окончания брожения. К таким дрожжам относятся спиртовые и хлебопекарные дрожжи. Дрожжи низового брожения, развиваясь в сбраживаемой жидкости, не переходят в поверхностный слой – пену, быстро оседают по окончании брожения, образуя плотный слой на дне бродильной емкости. К дрожжам низового брожения относятся пивные дрожжи. Такие различия при сбраживании жидких сред дрожжами верхового брожения и дрожжами низового брожения обусловлены тем, что дрожжи верхового брожения принадлежат к пылевидным дрожжам, не склеивающимися друг с другом, а дрожжи низового брожения относятся к хлопьевидным дрожжам, так как имеют клейкие оболочки, что приводит к агглютинации и быстрому осаждению клеток.
Семейство шизосахаромицетов. Клетки палочковидной формы, размножаются делением, в неблагоприятных условиях – спорообразованием. Представители этого семейства рода Schizosaccharomyces вызывают спиртовое брожение и используется в странах с жарким климатом для производства пива, кубинского рома.
Семейство сахаромикодов. Клетки лимоновидной формы, размножаются почкующимся делением, а в неблагоприятных условиях – спорообразованием. Дрожжи рода Saccharomycoides вызывают спиртовое брожение, но являются вредителями в виноделии, так как образуют продукты, придающие винам неприятный прокисший запах. Такие дрожжи называются дикими дрожжами. К диким дрожжам, утратившие способность к спиртовому брожению относятся дрожжи родов Candida, Torulopsis, Rhodotorul.
ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ:
Назовите объекты применения пищевой микробиологии.
Каковы основные свойства микроорганизмов?
Какие таксономические категории Вам известны?
Что такое «номенклатура микроорганизмов»?
Как делятся микроорганизмы в зависимости от структуры их клеточной организации?
Какие типы клеточной организации Вы знаете?
. Назовите основные компоненты прокариотической клетки.
Чем отличаются грамположительные и грамотрицательные бактерии?
Назовите химический состав и функции нуклеоида. В каких клетках имеется нуклеоид?
Какую функцию в клетке выполняют рибосомы? Чем отличаются рибосомы прокариот от рибосом эукариот?
Каковы состав и функции клеточной стенки эукариот?
Какие существуют отличия в строении прокариотической и эукариотической клеток?
Каков химический состав и функции цитоплазматической мембраны прокариотической и эукариотической клеток?
Какую роль выполняют лизосомы в эукариотической клетке?
Привести примеры известных Вам одноклеточных организмов.
В чем сходство и различия грибов с растениями, с животными?
В чем отличие совершенных грибов от несовершенных?
Какие признаки положены в основу классификации грибов?
Охарактеризуйте класс аскомицетов. Назовите наиболее важных представителей этого класса.
Охарактеризуйте класс дейтеромицетов. Какие из представителей дейтеромицетов являются возбудителями порчи плодов и овощей?
Каково строение спорангиеносцев, конидиеносцев?
Какие способы размножения грибов Вы знаете?
Что такое «оидии», «хламидоспоры»?
Перечислите основные стадии полового размножения грибов.
Что образуется в результате полового размножения у фикомицетов, аскомицетов, базидиомицетов?
Чем отличаются голосумчатые грибы от плодосумчатых?
Каковы формы и размеры дрожжевых клеток?
Каково строение дрожжевой клетки?
Как размножаются дрожжи?
Охарактеризуйте семейство дрожжей-шизосахаромицетов.
ГЛАВА 2. МЕТАБОЛИЗМ. ПРИНЦИПЫ РЕГУЛЯЦИИ ОБМЕНА ВЕЩЕСТВ МИКРОРГАНИЗМОВ
Метаболизмом или обменом веществ называется сумма целенаправленных реакций, протекающих под действием ферментных систем клетки, которые регулируются различными внешними и внутренними факторами, и обеспечивающие обмен веществами и энергией между средой обитания и клеткой.
Вся совокупность химических реакций в клетке (метаболизм) подчиняется принципу биохимического единства – в биохимическом отношении все живые существа на Земле сходны. У них единообразие строительных блоков, единая «энергетическая валюта» (АТФ), универсальный генетический код и в основе своей идентичны главные метаболические пути.
Реакции, приводящие к расщеплению и окислению веществ с получением энергии, называются катаболизмом; пути, приводящие к синтезу основных сложных веществ, называют анаболизмом. Катаболизм и анаболизм – два самостоятельных пути в обмене веществ, хотя отдельные участки их могут быть общими. Такие общие участки, свойственные катаболизму и анаболизму, называются амфиболитическими.
Катаболитические и анаболитические превращения осуществляются последовательно, так как продукт реакции предыдущей стадии является субстратом для последующей.
Энергетический обмен тесно связан с конструктивным (рис. 2.1).
В ходе биологического окисления образуются разнообразные промежуточные продукты (фосфорные эфиры сахаров, пировиноградная, уксусная, щавелевоуксусная, янтарная, -кетоглутаровая кислоты), из которых вначале синтезируются монополимеры (аминокислоты, азотистые основания, моносахариды), а затем основные макромолекулы клетки. Синтез компонентов клетки идет с затратой энергии, которая образуется при энергетическом обмене. Эта энергия затрачивается также на осуществление активного транспорта веществ, необходимых для анаболизма.
Взаимосвязь конструктивного и энергетического обмена заключается и в том, что процессы биосинтеза, кроме энергии, требуют поступления извне восстановителя в виде водорода, источником которого также служат реакции энергетического обмена.
Скорость течения реакций и в целом обмен веществ клетки зависят от состава питательной среды, условий культивирования микроорганизмов и, главное, от потребности клетки в каждый данный момент в энергии (АТФ) и биосинтетических структурах. Клетка очень экономно высвобождает энергию, и синтезируют веществ ровно столько, сколько необходимо ей в настоящий момент. Этот принцип лежит в основе регуляции и контроля всех стадий метаболических путей в клетке.
Регуляция метаболизма в микробной клетке имеет сложную взаимозависимую систему, которая «включает» и «выключает» определенные ферменты с помощью самых различных факторов: рН среды, концентрации субстратов, некоторых промежуточных и конечных метаболитов и т.д. Изучение путей регуляции определенных продуктов обмена веществ в клетке открывает неограниченные возможности для определения оптимальных условий биосинтеза микроорганизмами целевых продуктов.
Питательные вещества среды обитания Биополимеры микробной клетки К А Т А Б О Л И З М Биополимерысреды Низкомолекулярныесоединения А Н А Б О Л И З М БИО СИ Н Т Е Т И Ч Е С К И Е С Т Р У К Т У Р Ы М Е Т А Б О Л И Т Ы, У Д А Л Я Е М Ы Е И З К Л Е Т К И гидролитические ферменты Продукты гидролиза ферменты дальнейших превращений продуктов гидролиза А Ацетил-КоА окислительно-восстановительные ферменты Энергия макроэргических связей Б |
Рис.2.1. Схема катаболизма и анаболизма микробной клетки
А – конструктивный обмен; Б – энергетический обмен
Для существования жизни важны как регуляция активности отдельных путей метаболизма, так и координация деятельности этих путей.
Каждое из множества веществ создается в клетке в строго необходимых для роста пропорциях в результате ферментативных реакций. Ферменты, синтезирующиеся в клетке постоянно и образование которых не зависит от состава питательной среды называют конститутивными, например, ферменты гликолиза. Другие энзимы, адаптивные или индуцибельные, возникают только в ответ на появление в питательной среде индукторов – субстратов или их структурных аналогов.
Координация химических превращений, обеспечивающая экономность метаболизма, осуществляется у микроорганизмов тремя основными механизмами:
регуляцией активности ферментов, в том числе путем ретроингибирования;
регуляцией объема синтеза ферментов (индукция и репрессия биосинтеза ферментов);
катаболитной репрессией.
В процессе ретроингибирования (ингибирование по принципу обратной связи) активность фермента (аллостерического белка), стоящего в начале многоступенчатого превращения субстрата, тормозится конечным метаболитом, например:
Аспартат → Карбамил аспартат → Дигидро-оротовая кислота → Оротовая кислота →
→ Оротидин монофосфат → УМФ → ЦТФ
Карбамилтрансфераза
Хоризмат →Антранилат → Индолил глицерофосфат →Триптофан
Антранилатсинтетаза
Низкомолекулярные метаболиты передают информацию об уровне своей концентрации и состоянии обмена веществ ключевым ферментам метаболизма. Ключевые ферменты – это регуляторы периодичности образования продукта. С помощью описанного механизма конечные продукты саморегулируют свой биосинтез. Ретроингибирование – способ точного и быстрого регулирования образования продукта. На обмен веществ, аналогичный конечным метаболитам, оказывают эффект их аналоги.
Регуляция объема биосинтеза ферментов (индукция и репрессия) осуществляется на оперонном уровне (Ф.Жакоб и Ж.Моно, 1961) путем изменения количества иРНК, образующихся в процессе транскрипции.
Бактериальная клетка имеет множество генов, каждый из которых несет информацию и контролирует синтез одного белка или соответствующего соединения. Гены подразделяются на структурные гены, гены-регуляторы и гены-операторы. В структурных генах закодирована информация о первичном строении контролируемого ими белка, т.е. о последовательности расположения аминокислот, входящих в состав белка. Гены-регуляторы контролируют синтез белков-репрессоров, подавляющих функцию структурных генов, а гены-операторы выполняют роль посредников между генами регуляторами и структурными генами. (рис. 2.2).
| Опероном называется упорядоченная совокупность структурных генов (со знаками начала и конца) и регуляторных участков. В состав регуляторной зоны оперона входят ген-регулятор, промотор, усилители транскрипции (энхансеры), ослабители транскрипции (сайлансеры) и другие компоненты. Экспрессия регуляторного гена приводит к синтезу белка-репрессора, |
Рис.2. Структура и механизм индукции и репрессии lac-оперона (по Т.А. Егорова, 2003) А – в отсутствие индуктора; Б – в присутствии индуктора и при дефиците глюкозы |
который в свою очередь способен оккупировать зону первоначального связывания РНК-полимеразы (оператор) тем самым, препятствуя связыванию последней с промоторным участком и началу синтеза иРНК. Конечные продукты метаболических путей могут не только ингибировать активность ферментов первых стадий процесса, но и тормозить биосинтез ферментов последних его этапов, активируя белок репрессор.
Обнаруженный феномен назван репрессией, а ферменты, биосинтез которых стопорится под влиянием низкомолекулярных метаболитов, переводящих репрессорный белок в активную форму, называются репрессибельными. К их числу относятся глутаминсинтетаза, триптофансинтетаза, орнитин-карбамилтрансфераза, уреаза и др. Если концентрация конечного продукта уменьшается до определенного очень низкого уровня, то происходит дерепрессия фермента, т. е. скорость их биосинтеза возрастает до необходимых величин.
В процессе индукции низкомолекулярный метаболит-индуктор (например, лактоза), соединяясь с репрессорным белком (продукт гена-регулятора), инактивирует его и тем самым препятствует взаимодействию белка-репрессора с зоной оператора, что обеспечивает возможность присоединения к промотору РНК-полимеразы и начало синтеза иРНК. Бактериальные клетки продуцируют множество низкомолекулярных эффекторов в ответ на изменение окружающей среды (стресс, голодание, действие фагов и пр.). Каждый из эффекторов, взаимодействуя по аллостерическому механизму с определенными регуляторными белками, моделирует промоторную специфичность РНК-полимеразы, запуская тем самым экспрессию определенного набора генов.
Катаболитная репрессия. Сущность катаболитной репрессии заключается в подавлении биосинтеза ферментов, обеспечивающих метаболизм одного источника углерода другим источником углерода. Ранее считали, что причина такой репрессии состоит в подавлении биосинтеза ферментов обмена одного источника углерода, продуктами катаболизма другого.
Если в питательной среде присутствуют несколько различных источников углерода, клетка микроорганизма вырабатывает ферменты для усвоения лишь одного, наиболее предпочтительного субстрата. Так, например, когда клетки выращивают на смеси глюкозы и лактозы, то в первую очередь утилизируется глюкоза. После полного использования глюкозы происходит экспрессия ферментов метаболизма лактозы (экспрессия структурных генов лактозного оперона). Лактозный оперон (lac-оперон) включает структурные гены трех ферментов: X, Y и А (отвечают за взаимозависимый синтез β-галактозидазы, галактозилпермеазы и ацетилтрансферазы), контролирующих метаболизм лактозы в клетке. Об отсутствие глюкозы в среде сигнализирует цАМФ, синтез которой подавляется в присутствии глюкозы. Уровень цАМФ в клетке является функцией активности аденилатциклазы. цАМФ является необходимым компонентом для связывания РНК-полимеразы с зоной промотора и начала транскрипции генов, ответственных за синтез данных ферментов. В присутствии глюкозы концентрация цАМФ недостаточна для образования комплекса.
Итак, задача регуляторных механизмов заключается в эффективном регулировании и координировании путей метаболизма с целью поддержания необходимой концентрации клеточных компонентов. Кроме того, клетки должны адекватно реагировать на изменения условий окружающей среды посредством включением новых катаболических путей направленных на использование, имеющихся на данный момент питательных субстратов. Регуляция важна для поддержания баланса между энергетическими и синтетическими реакциями в клетке.
ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ:
В чем сущность энергетического обмена?
В чем состоит взаимосвязь конструктивного и энергетического обмена?
Что такое «фосфорилирование»?
Какие ферменты принимают участие в энергетическом обмене аэробов, факультативных анаэробов, облигатных анаэробов?
Что подразумевается под «амфиболитическими путями»?
Ферменты, и их биохимическая роль.
Классификация и номенклатура ферментов.
Активные центры ферментов. Субстратная специфичность.
Факторы, обеспечивающие ферментативный катализ.
Охарактеризуйте состояние равновесия ферментативной реакции?
Почему ферменты ускоряют реакции? Что такое энергия активации?
От чего зависит скорость ферментативной реакции?
Что такое специфичность ферментов?
Как называются ферменты, которые выделяются во внешнюю среду?
Что такое индуцибельные ферменты?
Что такое конститутивные ферменты?
Что такое коферменты? Назовите их классы.
Как называются ферменты, катализирующие синтетические процессы?
Что такое ретроингибирование?
Суть теории регуляции синтеза ферментов Ф.Жакоба и Ж.Моно.
Объясните механизм индукции синтеза ферментов.
Объясните механизм репрессии синтеза ферментов.
Что такое катаболитная репрессия?