скачать doc
Образовательная программа
среднего (полного) образования
по математике
I. Алгебра и начала анализа10 – 11 класс
Пояснительная записка
Образовательная программа по математике составлена на основе:
федерального компонента государственного стандарта общего образования;
примерной программы основного общего образования по математике Т.А.Бурмистрова, Просвещение, 2009
федерального перечня учебников, рекомендованных Министерством образования Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях на 2011-12 учебный год,
с учетом требований к оснащению образовательного процесса в соответствии с содержанием учебных предметов компонента государственного стандарта общего образования,
базисного учебного плана 2011-2012 учебного года,
учебного плана МАОУ « Новозаимская СОШ».
Общая характеристика учебного предмета
При изучении курса математики на базовом уровне продолжаются и получают развитие содержательные линии: «Алгебра», «Функции», «Уравнения и неравенства», «Геометрия», «Элементы комбинаторики, теории вероятностей, статистики и логики», вводится линия «Начала математического анализа». В рамках указанных содержательных линий решаются следующие задачи:
систематизация сведений о числах; изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры, расширение и совершенствование алгебраического аппарата, сформированного в основной школе, и его применение к решению математических и нематематических задач;
расширение и систематизация общих сведений о функциях, пополнение класса изучаемых функций, иллюстрация широты применения функций для описания и изучения реальных зависимостей;
изучение свойств пространственных тел, формирование умения применять полученные знания для решения практических задач;
развитие представлений о вероятностно-статистических закономерностях в окружающем мире, совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления;
знакомство с основными идеями и методами математического анализа.
Задачи учебного предмета
При изучении курса математики на базовом уровне продолжаются и получают развитие содержательные линии: «Алгебра», «Функции», «Уравнения и неравенства», «Элементы комбинаторики, вводится линия «Начала математического анализа». В рамках указанных содержательных линий решаются следующие задачи:
систематизация сведений о числах; изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры, расширение и совершенствование алгебраического аппарата, сформированного в основной школе, и его применение к решению математических и нематематических задач;
расширение и систематизация общих сведений о функциях, пополнение класса изучаемых функций, иллюстрация широты применения функций для описания и изучения реальных зависимостей;
развитие представлений о вероятностно-статистических закономерностях в окружающем мире, совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления;
знакомство с основными идеями и методами математического анализа.
Цели
Изучение математики на базовом уровне среднего (полного) общего образования направлено на достижение следующих целей:
формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;
развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для будущей профессиональной деятельности, а также последующего обучения в высшей школе;
овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;
воспитание средствами математики культуры личности, понимания значимости математики для научно-технического прогресса, отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики, эволюцией математических идей.
Общеучебные умения, навыки и способы деятельности
В ходе освоения содержания математического образования учащиеся овладевают разнообразными способами деятельности, приобретают и совершенствуют опыт:
построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин;
выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; выполнения расчетов практического характера; использования математических формул и самостоятельного составления формул на основе обобщения частных случаев и эксперимента;
самостоятельной работы с источниками информации, обобщения и систематизации полученной информации, интегрирования ее в личный опыт;
проведения доказательных рассуждений, логического обоснования выводов, различения доказанных и недоказанных утверждений, аргументированных и эмоционально убедительных суждений;
самостоятельной и коллективной деятельности, включения своих результатов в результаты работы группы, соотнесение своего мнения с мнением других участников учебного коллектива и мнением авторитетных источников.
Обучение ведётся по общеобразовательной программе. На изучение математики в 10 и 11 классах классе по программе выделяется 170 часов (5 часов в неделю). Из них 50 часов отводится на геометрию и 120 часов на алгебру. В связи с этим часы распределяются следующим образом: 5 часов в неделю в 1 четверти и 3 часа в неделю во 2, 3, 4 четвертях в 10 классе; 4 часа в неделю в 1 полугодии и 3 часа в неделю во втором полугодии в 11 классе, всего 240 учебных часа в 10 и 11 классах.
Программа составлена по учебнику «Алгебра и начала анализа» для 10,11 классов общеобразовательных учреждений /А.Н. Колмогоров, А.М. Абрамов, Ю.П. Дудницын и др.; Под. ред. А.Н. Колмогорова. – М.: Просвещение, 2004.
Распределение учебных часов по разделам курса
10 класс
Тригонометрические функции любого угла (6 часов)
Цели: рассмотреть свойства синуса, косинуса, тангенса и котангенса: знаки по четвертям, сохранение значения при изменении угла на целое число оборотов, чётность косинуса и нечётность синуса, тангенса и котангенса. Рассмотреть связь между градусной и радианной мерами угла.
Формирование представлений об углах, больших 180, 360 градусов, об отрицательных углах.
Овладение умением вычисления значений тригонометрических функций любого угла, используя свойство периодичности и чётности (нечётности) функций, формулы приведения
Основные тригонометрические формулы (9часов)
Цели: сформировать умения вычислять значения тригонометрических функций по известному значению одной из них, выработать умения и навыки выполнять несложные преобразования тригонометрических выражений.
Формирование представлений о соотношениях между тригонометрическими функциями одного и того же угла.
Овладение умением вычислять значения тригонометрических функций по известному значению одной из них.
Формулы сложения и их следствия (7часов)
Цели: вывести с учащимися формулы сложения, формулы двойного угла, формулы суммы и разности тригонометрических функций и научить навыки выполнять несложные преобразования тригонометрических выражений с помощью этих форму.
Формирование представлений о многообразии тригонометрических формул.
Овладение умением применения тригонометрических формул при преобразовании тригонометрических выражений.
Тригонометрические функции числового аргумента (6 часов)
Цели: расширить и закрепить знания и умения, связанные с тождественными преобразованиями тригонометрических выражений; изучить свойства тригонометрических функций и познакомить учащихся с их графиками.
Формирование представлений о тригонометрических функциях, их свойствах и графиках.
Овладение умением построения графиков тригонометрических функций.
Основные свойства функций (13 часов)
Цели: ввести понятие числовой функции, её области определения, области значений, свойства чётности и нечётности функций, периодичности, возрастания и убывания на промежутках, рассмотреть геометрические преобразования графиков функций, способствовать развитию навыков построения графиков функций.
Формирование представлений о понятии числовой функции, понятие графика функции, свойств функции.
Овладение умением построения графиков различных функций по их свойствам.
Решение тригонометрических уравнений и неравенств (13 часов)
Цели: ввести понятия арксинус, арккосинус, арктангенс и арккотангенс, учить вычислять их значения, ввести формулы корней простейших тригонометрических уравнений и рассмотреть примеры решений простейших тригонометрических уравнений, показать решение простейших тригонометрических неравенств.
Формирование представлений о тригонометрических уравнениях и неравенствах и приёмами их решения.
Овладение умением решения простейших тригонометрических уравнений и простейших тригонометрических неравенств и приёмами решения тригонометрических уравнений.
Производная (14 часов)
Цели: ввести понятие производной, её геометрического смысла, изучить правила вычисления производных, научить находить производные функций в случаях, не требующих трудоёмких выкладок.
Формирование представлений о производной функции, касательной к графику функции, о непрерывности и предельном переходе.
Овладение умением вычисления производных несложных функций с помощью правил вычисления производных.
Применение непрерывности и производной (9 часов)
Цели: ввести понятие непрерывной функции на промежутке, рассмотреть её свойство знакопостоянства, учить применять непрерывность функций при решении неравенств методом интервалов, при приближённых вычислениях, при решении физических и технических задач.
Формирование представлений о понятии непрерывности и предельном переходе
Овладение умением нахождения уравнения касательной, решения неравенств методом интервалов.
Применение производной к исследованию функций (16 часов)
Цели: познакомить учащихся с простейшими методами дифференциального исчисления и выработать умение применять их для исследования функций и построения графиков.
Формирование представлений о методах исследования функций.
Овладение умением исследования функций с помощью производной.
Повторение( 9 часов)
Цели: повторить и обобщить навыки решения основных типов задач по изучаемым в кусе 10 класса темам
11 класс
Повторение (4часа)
Цели: повторить и обобщить основные знания правил вычисления производных и навыки нахождения производных тригонометрических функций, сложных функций; повторить геометрический, физический смысл производной функции, применение производной к исследованию функций.
Первообразная (8часов)
Цели: познакомить учащихся с интегрированием как операцией, обратной дифференцированию; научить использовать свойства и правила при нахождении первообразных различных функций
Формирование представлений о понятии первообразной.
Овладение умением применения первообразной функции при решении задачи вычисления площадей криволинейных трапеций и других плоских фигур.
Интеграл (9часов)
Цели: научить учащихся применять первообразную для вычисления площадей криволинейных трапеций (формула Ньютона-Лейбница)
Формирование представлений о понятии неопределенного интеграла, определенного интеграла.
Овладение умением применения первообразной функции при решении задачи вычисления площадей криволинейных трапеций и других плоских фигур.
Обобщение понятия степени (10 часов)
Цели: познакомить учащихся с понятия корня n-й степени и степени с рациональным показателем, которые являются обобщением понятий квадратного корня и степени с целым показателем. Следует обратить внимание учащихся на то, что рассматриваемые здесь свойства корней и степеней с рациональным показателем аналогичны тем свойствам, которыми обладают изученные ранее квадратные корни и степени с целыми показателями. Необходимо уделить достаточно времени отработке свойств степеней и формированию навыков тождественных преобразований.
Формирование представлений корня n-ой степени из действительного числа, функции

Овладение умением извлечения корня, построения графика функции


Овладение навыками упрощение выражений, содержащих радикал, применяя свойства корня n-й степени.
Обобщить и систематизировать знания учащихся о степенной функции, о свойствах и графиках степенной функции в зависимости от значений оснований и показателей степени.
Показательная и логарифмическая функция (19часов)
Цели: познакомить учащихся с показательной, логарифмической и степенной функциями; изучение свойств показательной, логарифмической и степенной функций построить в соответствии с принятой общей схемой исследования функций. При этом обзор свойств давать в зависимости от значений параметров. Показательные и логарифмические уравнения и неравенства решать с опорой на изученные свойства функций.
Формирование представлений о показательной и логарифмической функциях, их графиках и свойствах.
Овладение умением понимать и читать свойства и графики логарифмической функции, решать логарифмические уравнения и неравенства.
Овладение умением понимать и читать свойства и графики показательной функции, решать показательные уравнения и неравенства.
Создание условий для развития умения применять функционально-графические представления для описания и анализа закономерностей, существующих в окружающем мире и в смежных предметах.
Производная показательной и логарифмической функции(16 часов)
Цели: познакомить учащихся с производной показательной и логарифмической функций, сформировать у учащихся навыки вычисления производной показательной и логарифмической функции, через решение различных типов заданий. Вывод формулы производной показательной функции провести на наглядно-интуитивной основе. При рассмотрении вопроса о дифференциальном уравнении показательного роста и показательного убывания показательная функция должна выступать как математическая модель, находящая широкое применение при изучении реальных процессов и явлений действительности.
Итоговое повторение(36 часов)
Цели: повторить и обобщить навыки решения основных типов задач по следующим темам: преобразование тригонометрических, степенных, показательных и логарифмических выражений; тригонометрические функции, функция y=

Обобщение и систематизация курс алгебры и начала анализа за 11 класса.
Создание условий для плодотворного участия в работе в группе; умения самостоятельно и мотивированно организовывать свою деятельность.
Формирование представлений об идеях и методах математики, о математике, как средстве моделирования явлений и процессов.
Овладение устным и письменным математическим языком, математическим знаниями и умениями.
Развитее логического и математического мышления, интуиции, творческих способностей.
Воспитание понимания значимости математики для общественного прогресса.
ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ВЫПУСКНИКОВ
В результате изучения математики на базовом уровне ученик должен
знать/понимать
значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;
универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;
вероятностный характер различных процессов окружающего мира;
Алгебра
уметь
выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;
проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;
вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;
Функции и графики
уметь
определять значение функции по значению аргумента при различных способах задания функции;
строить графики изученных функций;
описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;
решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков;
Начала математического анализа
уметь
вычислять производные и первообразные элементарных функций, используя справочные материалы;
исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа;
вычислять в простейших случаях площади с использованием первообразной;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
решения прикладных задач, в том числе социально-экономи-ческих и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения;
Уравнения и неравенства
уметь
решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, их системы;
составлять уравнения и неравенства по условию задачи;
использовать для приближенного решения уравнений и неравенств графический метод;
изображать на координатной плоскости множества решений простейших уравнений и их систем;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
построения и исследования простейших математических моделей;
Элементы комбинаторики, статистики и теории вероятностей
уметь
решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул;
вычислять в простейших случаях вероятности событий на основе подсчета числа исходов;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
анализа реальных числовых данных, представленных в виде диаграмм, графиков;
анализа информации статистического характера;
Учебно-методический комплект
Алгебра и начала анализа: Учеб. для 10–11 кл. общеобразоват. учреждений /А.Н. Колмогоров, А.М. Абрамов, Ю.П. Дудницын и др.; Под. ред. А.Н. Колмогорова. – М.: Просвещение, 2004.
Дополнительная литература
Дидактические материалы по алгебре и началам анализа для 10 класса /Б.М. Ивлев, С.М. Саакян, С.И. Шварцбурд. – М.: Просвещение, 2003.
Дидактические материалы по алгебре и началам анализа для 11 класса /Б.М. Ивлев, С.М. Саакян, С.И. Шварцбурд. – М.: Просвещение, 2003.
Задачи по алгебре и началам анализа: Пособие для учащихся 10–11 кл. общеобразоват. учреждений /С.М. Саакян, А.М. Гольдман, Д.В. Денисов. – М.: Просвещение, 2003.
Научно-теоретический и методический журнал «Математика в школе»
Еженедельное учебно-методическое приложение к газете «Первое сентября» Математика
Единый государственный экзамен 2006-2008. Математика. Учебно-тренировочные материалы для подготовки учащихся / ФИПИ-М.: Интеллект-Центр, 2005-2008.
II. Геометрия 10 – 11 класс
Для продуктивной деятельности в современном мире требуется достаточно прочная математическая подготовка. Каждому человеку в своей жизни приходится выполнять сложные расчеты, владеть практическими приемами геометрических измерений и построений. Изучение геометрии развивает воображение, пространственные представления, способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии. Кроме того основной задачей курса геометрии является необходимость обеспечить прочное и сознательное овладение учащимися системой математических знаний и умений, необходимых в повседневной жизни в современном обществе, достаточных для изучения смежных дисциплин и продолжения образования.
Данная рабочая программа и поурочное планирование курса геометрии для десятых-одиннадцатых классов составлена на основе учебника Геометрия 10 – 11 Л. С. Атанасяна, В. Ф. Бутузова, С. Б. Кадомцева и др., с учетом требований ГОС и регионального образовательного стандарта Мурманской области, базисного учебного плана.
Основные особенности этой рабочей программы
(10кл. 2 ч. Во 2 , 3, 4 четвертях =50 ч. и 11кл. 1 ч. в первом полугодии и 2ч. во втором полугодии Х 34 = 50 ч.): итого 100 часов в 10 и 11 классах.
Учебник «Геометрия, 10–11», авторы Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др. Курс геометрии 10 класса включает в себя главы 1, 2, 3, 4 рассматриваемого учебника. Курс геометрии 11 класса включает в себя главы 5, 6, 7 рассматриваемого учебника.
СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА
10 класс
Введение (4 часа)
Предмет стереометрии. Аксиомы стереометрии. Некоторые следствия из аксиом.
Сформировать представления учащихся об основных понятиях и аксиомах стереометрии, их использовании при решении стандартных задач логического характера, а также об изображениях точек, прямых и плоскостей на проекционном чертеже при различном их взаимном расположении в пространстве. В этой теме учащихся фактически впервые встречающихся здесь с пространственной геометрией. Поэтому важную роль в развитии пространственных представлений играют наглядные пособия: модели, рисунки, трехмерные чертежи и т. д. Их широкое привлечение в процессе обучения поможет учащимся легче войти и тематику предмета. В ходе решения задач следует добиваться от учащихся проведения доказательных рассуждений.
Глава 1. Параллельность прямых и плоскостей (12 часов)
Систематизировать наглядные представления учащихся об основных элементах стереометрии (точках, прямых, плоскостях); сформировать представление о взаимном расположении прямых и плоскостей в пространстве, о параллельности прямых и плоскостей в пространстве. Изучение темы начинается с беседы об аксиомах стереометрии. Все сообщаемые учащимся сведения излагаются на наглядной основе путем обобщения очевидных или знакомых им геометрических фактов. Целесообразно завершить беседу рассказом о роли аксиоматики в построении математической теории. Данная тема является опорной для дальнейшего изучения всего геометрического материала. Основной материал этой темы посвящен формированию представлений о возможных случаях взаимного расположения прямых и плоскостей, причем акцент делается на формирование умения распознавать эти случаи в реальных формах (на окружающих предметах, стереометрических моделях и т. п.). При решении стереометрических задач на вычисление длин отрезков особое внимание следует уделить осмысленному применению фактов из курса планиметрии.
Глава 2. Перпендикулярность прямых и плоскостей (16 часов)
Дать учащимся систематические сведения о перпендикулярности прямых и плоскостей в пространстве, ввести понятие углов между прямыми и плоскостями, между плоскостями. В ходе изучения темы обобщаются и систематизируются знания учащихся о перпендикулярности прямых, перпендикуляре и наклонных, известные им из курса планиметрии Постоянное обращение к знакомому материалу будет способствовать более глубокому усвоению темы. Постоянное обращение к теоремам, свойствам и признакам курса планиметрии при решении задач по изучаемой теме не только будет способствовать выработке умения решать стереометрические задачи данной тематики, но и послужит хорошей пропедевтикой к изучению следующих тем курса.
Глава 3. Многогранники (10 часов)
Дать учащимся систематические сведения об основных видах многогранников. Учащиеся уже знакомы с такими многогранниками, как тетраэдр и параллелепипед. Теперь предстоит расширить представления о многогранниках и их свойствах. В учебнике нет строгого математического определения многогранника, а приводится лишь некоторое описание, так как строгое определение громоздко и трудно не только для понимания учащимися, но и для его применения. Изучение многогранников нужно вести на наглядной основе, опираясь на объекты природы, предметы окружающей действительности. Весь теоретический материал темы откосится либо к прямым призмам, либо к правильным призмам и правильным пирамидам. Все теоремы доказываются достаточно просто, результаты могут быть записаны формулами. Поэтому в теме много задач вычислительного характера, при решении которых отрабатываются умения учащихся пользоваться сведениями из тригонометрии, формулами площадей.
Глава 4. Векторы в пространстве(4 часов)
Обобщить изученный в базовой школе материал о векторах на плоскости, дать систематические сведения о действиях с векторами в пространстве.
Основное внимание уделяется решению задач, так как при этом учащиеся овладевают векторным методом.
Повторение (4ч)
Обобщить изученный в 10 классе материал. Применять изученный теоретический материал при выполнении письменных работ.
Учебно-тематический план. 10 класс.
№ п/п | Наименование разделов и тем | Всего часов | В том числе: | |
Уроки | Контроль-ные работы (количество часов) | |||
1. | Введение | 4 | 4 | |
2.. | Параллельность прямых и плоскостей | 12 | 10 | 2 |
3. | Перпендикулярность прямых и плоскостей | 16 | 15 | 1 |
4. | Многогранники | 10 | 9 | 1 |
5. | Векторы в пространстве | 4 | 4 | 0 |
6. | Итоговое повторение | 4 | 4 | 0 |
| Итого: | 50 | 46 | 4 |
СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА
11 класс
Глава 5. Метод координат (14ч)
Основная цель - сформировать умения применять координатный и векторный методы к решению стереометрических задач, на нахождение длин отрезков и углов между прямыми и векторами в пространстве.
В результате изучения данной главы учащиеся должны:
знать формулы координат вектора, координаты суммы и разности векторов, произведения вектора на число, скалярного, векторного произведения векторов.
уметь применять формулы при решении задач.
Глава 6. Цилиндр, конус, шар (12ч)
Основная цель - сформировать у учащихся знания об основных видах тел вращения. Развить пространственные представления на примере круглых тел, продолжить формирование логических и графических умений.
В результате изучения данной главы учащиеся должны:
знать и уметь определять виды круглых тел, взаимное расположение круглых тел и плоскостей, вписанных и описанных призм и пирамид,
уметь применять формулы для вычисления площадей боковой и полной поверхностей при решении задач.
Глава 7. Объемы тел (18ч)
Основная цель - продолжить систематическое изучение многогранников и тел вращения в ходе решения задач на вычисление их объемов.
В результате изучения данной главы учащиеся должны:
знать формулы нахождения объемов многогранников и тел вращения.
уметь применять формулы при решении задач.
Повторение ( 4ч)
Уметь применять изученный теоретический материал при выполнении письменных работ.
Учебно-тематический план. 11 класс.
№ п/п | Наименование разделов и тем | Всего часов | В том числе | |
уроки | Контрольные работы | |||
1. | Метод координат в пространстве | 14 | 12 | 2 |
2.. | Цилиндр, конус, шар | 12 | 11 | 1 |
3. | Объемы тел | 20 | 18 | 2 |
4. | ИТОГОВОЕ ПОВТОРЕНИЕ | 4 | 4 | 0 |
| Итого: | 50 | 45 | 5 |
Требования к уровню подготовки обучающихся
В результате изучения геометрии в 10 -11 классах учащиеся должны:
знать/понимать
значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю возникновения и развития геометрии;
универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;
вероятностный характер различных процессов окружающего мира;
уметь
распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;
описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;
анализировать в простейших случаях взаимное расположение объектов в пространстве;
изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;
строить простейшие сечения куба, призмы, пирамиды;
решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);
использовать при решении стереометрических задач планиметрические факты и методы;
проводить доказательные рассуждения в ходе решения задач;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;
вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.
Учебно-методический комплекс курса:
1. Программы для общеобразовательных школ, гимназий, лицеев: Математика, 5-11 кл. – М.: Дрофа, 2001г.
2. Геометрия, 10 – 11: Учебник для общеобразоват. учреждений / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – М.: Просвещение, 2006.
3. Поурочные разработки по геометрии. 10 класс. / Сост. В.А. Яровенко. – М.: ВАКО, 2006.
4. Зив Б.Г. Дидактические материалы по геометрии для 10 класса / Б.Г. Зив. – М.: Просвещение, 2003.