Социально исследовательский проект 2013г. Паспорт педагогического проекта
Муниципальное образование Ленинградский район
Муниципальное бюджетное общеобразовательное учреждение
средняя общеобразовательная школа № 4
станицы Крыловской
муниципального образования
Ленинградский район
Социально - исследовательский проект

2013г.
Паспорт педагогического проекта
Юридический адрес | 353740 Краснодарский край ст. Крыловская, ул. Энгельса, 100 |
Идея проекта | Без математики не может обойтись ни одна современная наука. Конечно, в первую очередь, это точные науки, где математические формулы помогают описывать многие явления. Но, кроме того, математика нужна во многих гуманитарных науках, например, в истории, в лингвистике. Знание математики помогает и при выполнении сложнейших физических расчетов, и, конечно же, в бытовой жизни. |
Название | Математика и жизнь |
Разработчик | Кощиенко Ирина Анатольевна, учитель математики |
Исполнители | Учащиеся 7, 8классов |
Сроки реализации | 2012-2013 годы |
Цель проекта | демонстрация значимости законов математикив жизни человека. |
Содержание
Введение 4
Аннотация 6
Этапы работы над проектом 7
Глава I. Теоретическое изучение законов математики 8
1. Что такое математика 8
2. Зачем она нужна? 9
3. Какими качествами должен обладать математик 12
4. Как ей заниматься 14
5. Заключение 16 6.Список использованных источников 17
Я люблю математику не только потому,
что она находит применение в технике,
но и потому, что она красива.
(Р. Петер)
1. ВВЕДЕНИЕ.
Стремление к знанию - одна из основных черт человека. Еще в древности человек стремился познавать окружающую природу. Сначала это была практическая необходимость - нужно было добывать себе пищу, защищаться от диких животных. И люди начали изучать мир, в котором они жили. Первые знания имели очень большое значение для человечества. Так, без календаря было невозможно земледелие, а изобретение огня изменило многое в жизни первобытных людей: они научились приготавливать пищу, выплавлять металлы, охранять свое жилище. В это же время были заложены начала большинства современных наук. В первую очередь развивались естественные науки, которые имели практическое значение для жизни человека - география, физика, биология. Кроме того, людям всегда было интересно знать про самих себя - эти знания нужны, в частности, для лечения болезней. Человек живет в обществе и подчиняется его законам. Законы взаимоотношений между людьми описывают гуманитарные науки: литература, обществоведение, право. Люди всегда стремились знать о своем прошлом - так появилась история. Эти знания часто бывают очень полезны: опыт наших предков помогает и в современной жизни. Хотя науки описывают природу и самого человека с совершенно разных сторон, но все вместе они дают полное и подробное описание мира, они делают человека умнее, добрее, душевно богаче. По словам Ф. Бэкона, "Знание есть сила, сила есть знание". К сожалению, сейчас условия жизни, мелкие бытовые заботы иногда подавляют желание получить знания. Очень страшно и опасно невежество. К. Гельвеций говорил, что "Всякий изучающий историю народных бедствий может убедиться, что большую часть несчастий на земле приносит невежество". Невежественные люди чрезмерно самоуверенны, они часто сами не понимают, что делают, из-за своей необразованности и незнания они могут слепо последовать за идеей, даже самой неправильной и опасной. Поэтому они могут стать причиной многих бед, как отдельного человека, так и целого государства.
Мой любимый предмет - математика. На первый взгляд, кажется, что она не имеет никакого отношения к природе, но на самом деле это не так. Без математики не может обойтись ни одна современная наука. Конечно, в первую очередь, это точные науки, где математические формулы помогают описывать многие явления. Но, кроме того, математика нужна во многих гуманитарных науках, например, в истории, в лингвистике. Знание математики помогает и при выполнении сложнейших физических расчетов, и, конечно же, в бытовой жизни.
Действительно, о математике как науке, являющейся фундаментом всего естественно-научного комплекса дисциплин и даже некоторых ветвей в гуманитарном знании, сказано уже немало. Но зачем занятия математикой нужны лично мне?
Когда я буду учиться в 11-м классе, то попаду в категорию «абитуриент», то есть выпускник, — и хочу поучиться ещё. В нашей стране существует довольно жесткое деление вузов на гуманитарные - куда математику сдавать не надо, и естественнонаучные, куда — надо. Человеку, не преуспевшему в искусстве словесности и неважно ориентирующемуся в истории и т. п., если он хочет продолжить образование, сдавать математику непременно предстоит.
Математика — логичная и достаточно эстетичная наука, чем она мне и нравится. И сдавать мне ее придется — хотя бы ради удовольствия поучиться еще несколько лет.
Я считаю, что математика — наука очень важная и в школе она нужна. До того момента, когда человек (ученик) определится в выборе своей будущей профессии, нужно рассказывать о математике не так, как в учебнике: может быть, не слишком подробно и углубленно, а с более широкой, общенаучной точки зрения.
Но вот когда человек поймет, какие предметы нужны ему для его будущей специальности, следовало бы либо начать изучать математику более углубленно, либо совсем поверхностно.
Это моё мнение, а вот что говорят мои одноклассники:
Математика нужна и для постройки дома, и для денежных расчетов, и в быту. Она связана и с другими науками, которые мы используем в повседневной жизни.
Многие не хотят учить математику, потому что некоторые операции компьютеры могут выполнять за нас, но ведь машина может ошибиться. А я не хочу стать жертвой компьютерного сбоя.
Конечно, я не хотел бы быть не глупее своих детей. Я хотел бы уметь объяснить им то, чего они не понимают. Это бы повысило мой авторитет в их глазах.
Математика — это очень интересная наука, особенно пространственная геометрия. Математика развивает у человека логику. Вообще она нужна абсолютно везде, в любом деле требуется хоть чуть-чуть математики, хоть самой простейшей.
Конечно, мне математика нужна прежде всего для того, чтобы поступить в институт. Да и так я ей пользуюсь постоянно: на огороде, дома, при денежных расчетах, при приготовлении пищи. Для всех бытовых вещей нужна математика, которую мы изучаем в школе.
Но зачем нужна высшая математика? По-моему, ее невозможно применить на практике в повседневной жизни. Наверное, она нужна для развития логики. Математика заставляет думать, а вообще-то это красиво.
Эта работа призвана показать привлекательность математики, её жизненную необходимость для человека. Вопросы, на которые я искала ответ:
Что такое математика?
Зачем она нужна?
Какими качествами должен обладать математик?
Как ей заниматься?
Чем может удивить математика современного человека?
2. АННОТАЦИЯ
Крайне малое время, отведенное на усвоение школьниками знаний в области математики в процессе учебных занятий, а также во внеурочное время, сказывается на недостаточном уровне знаний. Влияет и дефицит знаний о практическом применении законов математики в жизнедеятельности человека. Поэтому у нас возникла необходимость в разработке проекта коллективного творческого дела, реализация которого способствовала бы развитию у участников образовательного процесса представления о том, как можно применить законы математики в жизни человека. Тема данного проекта является актуальной не только для учащихся конкретной школы, но и для других школ территории РТ и за ее пределами..
В его основе – развитие познавательных процессов ученика, умений самостоятельно конструировать свои знания, ориентироваться в информационном пространстве. Добиться такого результата можно только тогда, когда у школьников будут сформированы самостоятельность мысли, умение находить и решать проблемы, привлекая для этого знания из разных предметных областей и сфер деятельности, способность прогнозировать результаты и возможные последствия вариантов решения, умение устанавливать причинно-следственные связи. Метод проектов направлен к тому, чтобы формировать у старшеклассников новый тип мышления – интегративное мышление.
На первом этапе определяем типологические признаки проекта:
1. По доминирующей деятельности – смешанный тип, так как его реализация требует объединить все виды деятельности: исследовательскую, творческую, поисковую, практико-ориентированную.
2. По предметно-содержательной области – монопроект, ибо предусматривает применение знаний математики.
3. По характеру координации проект открытый, с явной координацией, так как учитель-математик ненавязчиво направляет работу его участников, организует отдельные этапы проекта, деятельность исполнителей.
4. По характеру контактов – внешний (проект организуется в средних классах).
5. По количеству участников проекта – групповой. По продолжительности выполнения – долгосрочный.
При работе над проектом предусматривается объединение учащихся в творческие рабочие группы, специализирующиеся как:
1. Координатор (координация деятельности творческих групп).
2. Математики-теоретики (изучение и анализ раздела физики)
3. Математики - практики (формулировка и решение задач)
4. Группа информационной поддержки (оформление слайдов, фотосъемка, компьютерная презентация проекта)
3. ЭТАПЫ РАБОТЫ НАД ПРОЕКТОМ
В любом открытии есть 99 % труда и потения и только 1 % таланта и способностей.
Л. Магницкий
Работа над проектом выполняется в рамках предмета математики. Но для его успешной реализации потребуется соединение компетентностей в различных областях: социальный опыт, сфера самостоятельной деятельности, культурно-досуговая деятельность, ИКТ и другое.
1 этап.
Подготовительный или погружение в тему.
• Формулирование темы, основополагающего и проблемных вопросов.
• Создание групп. Определение темы проекта, выдвижение гипотез
2 этап
Реализация проекта.
• Работа в группах. Сбор и обработка информации. Создание презентации, буклета, диаграммы учащимися.
3 этап
Защита проекта.
• Представление презентации, буклета.
• Выводы.
• Оценка.
• Награждение.
Глава I. Теоретическое изучение законов математики.
1.Что такое математика.
При решении математической задачи человек имеет дело с ограниченным набором объектов, имеющих четкие отношения друг с другом. В жизни же, наоборот, их количество очень велико, а отношения между ними достаточно размыты.
Первоначально математика брала, например, такие объекты из окружающей действительности, как числа и геометрические фигуры. В отличие от физики эта точная наука изучает закономерности отношений, не зависящие от физического устройства этого мира. В ней утверждается, что из одних отношений объектов могут быть логически выведены другие отношения между ними. Начальные свойства и способы логического вывода человек берет из жизни, воспроизводя разные ситуации с реальными объектами или представляя их умозрительно и обращаясь к своему опыту. Далее он использует только специально сформулированные понятия, образы, в том числе рисунки и правила вывода одних утверждений из других. Мышление, оторванное от понятий, доступных органам чувств, можно назвать абстрактным. Преобразование информации по четко определенным законам и без ошибок можно назвать строгим. Выводы, сделанные математикой, будут правильны в жизни, если исходная информация была верна. Другим путем, кроме как с помощью строгого абстрактного математического подхода, в сложных явлениях реального мира, особенно в технике, где много логических связей, зачастую нельзя получить точную информацию.
После четкой формулировки исходных свойств объектов и способа вывода из одних свойств других, процесс вывода можно формализовать, то есть свести к механическим преобразованиям информации. Но, чтобы решать задачи, нужен алгоритм, совершающий эти преобразования наиболее эффективным путем. Математик, в основном, обладает этим методом наиболее быстрого решения задач, но его алгоритм не формализован и в большой степени основан на методах и рефлексах, заложенных от природы или выработанных в процессе реальной жизни. Поэтому составление такого алгоритма - задача нетривиальная. Заметим, что всегда можно дать задачу с как угодно сложным или сложно находимым решением, возможно, даже с простой изящной формулировкой. Кроме того, человек - не машина, обладает слабостями и до оптимального алгоритма работы он не доходит. Это доказывает и долгий путь технических и научных достижений, и то, что часто простые решения некоторых задач были не скоро найдены. Современные науки - математика, физика, химия, биология и техника - вышли на уровень задач, для которых способностей человека не достаточно.
2.Зачем она нужна?
1. Для прикладных нужд: техники, физики, химии, биологии, программирования и т.д. Кроме того, одни области математики нужны для других.
2. Для знания, точного установления фактов, чтобы было меньше неизвестного, неясного и чтобы все могли пользоваться этими знаниями. Для воспитания дисциплины мышления и мыслительных способностей. Подход, применяемый при решении математической задачи, описанный в разделе "Как ей заниматься", может быть полезен в любых рассуждениях. Строгое и абстрактное мышление, необходимое в реальной действительности, легче развить, занимаясь математикой, так как эта наука уже абстрактна и строга, кроме того, исходная информация математической задачи доступна, ограничена и неизменна в отличие от ситуации в жизни.
3. Для получения такого же удовлетворения, как от игры или любого интересного дела. Математика привлекательна в этом отношении своей содержательностью, сложностью, строгостью построений, общностью выводов, простотой и неожиданностью результатов.
Почти все математические открытия имеют в основе очень простую идею. Учебники часто скрывают этот факт. Они обычно содержат громоздкие выводы и этим создают впечатление, что математики — это люди, которые всю свою жизнь просиживают за письменными столами и переводят тонны бумаги. Это чепуха. Многие математики очень успешно работают в ванной, в кровати, ожидая поезда или катаясь на велосипеде (предпочтительно при слабом уличном движении). Математические вычисления производятся до или после открытия. Само открытие возникает из основных идей.
Немногие представляют себе, как огромна сфера действия современной математики. Вероятно, было бы легче овладеть всеми существующими языками, чем всеми математическими знаниями, известными в настоящее время. Мне кажется, что все языки можно было бы выучить за одну человеческую жизнь, а всю математику, конечно, нет. К тому же объём математических знаний не остаётся неизменным. Ежегодно публикуются всё новые открытия. Например, в 1951 г. для реферативного изложения всех математических статей, вышедших за год, потребовалось 900 печатных страниц крупного формата. Только за январь упомянуто 451 название, причём реферировались статьи и книги, рассматривающие новые проблемы; лишь в немногих из них упоминались известные факты.
Человеку, желающему быть в курсе всего нового в математике, пришлось бы прочитывать ежедневно около 15 статей, весьма больших по объёму и содержащих сложные математические выкладки. Трудно даже мечтать о выполнении подобной задачи.
Открытия, которые делают математики, столь разнообразны по своему характеру, что однажды кто-то, видимо, в отчаянии предложил определить математику как «всё, чем занимаются математики». Казалось, что только такое широкое определение может охватить всё, что относится к математике. Математики решают проблемы, которые в прошлом не считались математическими, и трудно предсказать, чем ещё они будут заниматься в будущем.
Точнее было бы определение: «Математика — это классификация всех возможных задач и методов их решения». Это определение, пожалуй, тоже расплывчато, так как оно охватывало бы даже такие рубрики, как газетные объявления «Обращайтесь со всеми вашими сердечными заботами к тёте Минни», что мы никак не имеем в виду.
Для нас достаточно было бы определение: «Математика — это классификация и изучение всех возможных закономерностей». Слово «закономерность» здесь используется в таком смысле, с которым многие могут не согласиться, а именно в самом широком смысле, как название любого рода закономерностей, которые могут быть познаны умом.
Любая математическая теория должна непременно сочетать в себе мощь метода, обусловливающую возможность применений к естественным наукам, и красоту, стройность, столь привлекательную для ума. Нам кажется, что наше определение математики удовлетворяет обоим этим требованиям.
Интересно заметить, что «чистые» математики, движимые только чувством стройности к математической форме, часто приходили к выводам, которые в дальнейшем оказывались чрезвычайно важными для науки. Греки изучали свойства эллипса более чем за тысячу лет до того, как Кеплер использовал их идеи для определения траекторий планет. Математический аппарат теории относительности был создан за 30-50 лет до того, как Эйнштейн нашёл для него применение в физике. Подобных примеров можно было бы привести много. С другой стороны, много стройных теорий и проблем, которые любой «чистый» математик причислит к математике, возникли в связи с физикой.
Практики, как правило, не имеют представления о математике как о способе классификации всех проблем. Обычно они стремятся изучать только те разделы математики, которые уже оказались полезными для их специальности. Поэтому они совершенно беспомощны перед новыми задачами. Вот тогда-то они обращаются за помощью к математике. (Это разделение труда между инженерами и математиками, вероятно, оправдано: жизнь слишком коротка для того, чтобы одновременно изучать и абстрактную теорию и инженерное дело.) Встреча математика и инженера обычно очень забавна. Инженер. ежедневно имея дело с машинами, настолько привыкает к ним, что не может понять чувство человека, видящего машину впервые. Он забрасывает своего консультанта-математика огромным количеством подробностей, которые для того ровным счетом ничего не значат. Через некоторое время инженер приходит к выводу, что математик — абсолютный невежда и что ему нужно объяснять простейшие вещи, как ребёнку или Сократу. Но, как только математик поймёт, что делает машина и что от неё требуется, он переводит задачу на язык математических терминов. После этого он может заявить инженеру одно из трёх:
что эта задача известна и уже решена;
что это новая задача, которую он может попытаться решить;
что это одна из тех задач, которую математики безуспешно пытались решить, и что ещё могут пройти века, прежде чем будет сделан хотя бы шаг к её решению, и что поэтому инженеру придётся решать её эмпирически.
К сожалению, третий случай встречается удручающе часто. Но первый и второй случаи также довольно часты, и вот тогда-то математик, благодаря его знанию закономерностей, может принести пользу в тех областях, о которых он в некотором смысле ничего не знает.
Язык математики, сам по себе, имеет все ингредиенты, которые делают его универсальным языком, разделяется всеми людьми, независимо от культуры, религии или пола. Пи всегда 3,14159 независимо от того, где мы находимся. Аналогичным образом, элементарные математические процессы (как дополнение, вычитание и т.д.) никогда не изменятся в связи с изменением местонахождения или по любой другой причине какого. Они все говорят о тесной взаимной связи математики и нашей повседневной жизни.
В то время, когда даже обычный человек в настоящее время все больше зависят от применения науки и техники в повседневной деятельности жизни, роль математики, несомненно, была пересмотрена. Почти каждый следующий момент времени мы делаем простые расчеты в задней части нашего разума. Конечно, все это делается довольно бессознательно без мысли все время за использование математики на всех подобных случаях.
Чтение времени на часах, округление даты в календаре, проверка пробега автомобиля, остановка на АЗС, получение в школе баллов за экзамены, ставки на скачках, приготовление по рецепту на кухне - и этот список применения математики просто бесконечен. Нас пугает, в некоторой степени, представить себе жизнь без какой-либо информации о расчетах или вычислений, или, другими словами, без математики.
На психологическом уровне, воздействие математики помогает в разработке аналитического ума и способствует лучшей организации идей и точные выражения мыслей. В более общем плане, вдали от рассмотрения высших математических понятий, значение математики для мужчины велико всякий раз, когда он посещает банки, торговые центры, железных дороги, почтовые отделения, страховые компании, или сделки подобные. Даже тогда, когда мы думаем о роли математики в нашей рекреационной деятельности, мы имеем список, который проходит довольно долго: видео-игры, компьютерные игры, ребусы, загадки, и так далее.
3. Какими качествами должен обладать математик.
Для всех математиков характерна дерзость ума. Математик не любит, когда ему о чём-нибудь рассказывают, он сам хочет дойти до всего. Конечно, зрелый математик, узнав о каком-нибудь великом открытии, поинтересуется, в чём оно состоит, и не станет терять время на то, чтобы открывать уже открытое. Но я имею в виду юных математиков, у которых дерзость ума проявляется особенно сильно. Если вы, например, преподаёте геометрию девяти-десятилетним ребятам и рассказываете им, что никто ещё не смог разделить угол на три равные части npи помощи линейки и циркуля, вы непременно увидите, что один-два мальчика останутся после уроков и будут пытаться найти решение. То обстоятельство, что в течение двух тысяч лет никто не решил эту задачу, не помешает им надеяться, что они смогут это сделать в течение часового перерыва на обед. Это, конечно, не очень скромно, но и не свидетельствует об их самонадеянности. Они просто не готовы принять любой закон, а ведь в действительности уже доказано, что невозможно разделить угол на три равные части при помощи линейки и циркуля. Их попытка найти решение — того же рода, что попытка представить число √2 в виде рациональной дроби.
Хороший ученик всегда старается забежать вперёд. Если вы ему объясните, как решать квадратное уравнение дополнением до полного квадрата, он непременно захочет узнать, можно ли решить кубическое уравнение дополнением до полного куба. Остальные ученики класса не задают подобных вопросов. С них хватит и квадратных уравнений, они не ищут дополнительных трудностей.
Вот это желание исследовать является второй отличительной чертой математика. Это одна из сил, содействующих росту математика. Математик получает удовольствие от знаний, которыми уже овладел, и всегда стремится к новым знаниям.
Эту мысль можно пояснить на примере дробных показателей степени из школьного курса алгебры. Легко представить себе человека, который, поверхностно ознакомившись с дробными и отрицательными показателями степени, начнёт недоумевать, зачем все это нужно. Ведь приходится преодолевать столько логических трудностей! Мне представляется что тот, кто открыл дробные показатели степени, сначала работал над целыми показателями и получил такое большое удовлетворение от этой работы, что ему захотелось развить этот раздел, и он готов был взять на себя логический риск. Ведь на первых порах новое открытое почти всегда является вопросом веры, и лишь позднее, когда становится ясным, что это действительно открытие, приходится находить логическое оправдание, которое удовлетворит самых придирчивых критиков.
Интерес к закономерностям — третье необходимое качество математика. Уже в самом начале арифметики встречаются закономерности. Например, из четырёх камней можно сложить квадрат, а из пяти — нельзя.
Способность к обобщению — один из самых важных факторов, определяющих математика. Чем шире круг вопросов, к которым применим какой-нибудь общий принцип, тем чаще он нам поможет выпутаться из затруднений. Пуанкаре говорил: «Предположим, я занялся сложным вычислением и с большим трудом наконец получил результат; но все мои усилия окажутся напрасными, если они не помогут предвидеть результат в других аналогичных вычислениях, если они мне не дадут возможность проводить их с уверенностью, избегая тех ошибок и заблуждений, с которыми я должен был мириться в первый раз».
После обобщения результат становится более полезным. Вас, возможно, удивит, что обобщение почти всегда также упрощает результат. Более общий вывод легче воспринять, чем менее общий. Общая теорема редко содержит что-нибудь запутанное; её цель — обратить ваше внимание на действительно важные факты.
В элементарной математике мы встречаем смесь всяких важных и неважных деталей. В высшей математике мы пытаемся разделить различные элементы и изучить каждый в отдельности. В этом смысле высшая математика, быть может, гораздо проще, чем элементарная.
Всё, о чём мы говорили выше, имело целью расширить область вопросов, подвластных математике. Исследование, открытие закономерностей, объяснение смысла каждой закономерности, изобретение новых закономерностей по образу уже известных — все эти виды деятельности расширяют область действия математики. С практической точки зрения становится исключительно трудным следить за всеми полученными результатами, и нельзя сказать, чтобы нагромождение не связанных между собой теорем представляло отрадное зрелище. Будучи и деловыми людьми и художниками одновременно, математики чувствуют потребность собрать все эти разрозненные результаты.
Не удивительно, что вся история математики состоит из чередующихся процессов «расширений» и «сокращений». Например, внимание математиков привлекает какая-нибудь задача, пишутся сотни статей, каждая из которых освещает лишь одну сторону истины. Вопрос разрастается. Затем какой-нибудь гений, опираясь на все данные, собранные с таким трудом, заявляет: «Всё, что мы знаем, становится почти очевидным, если посмотреть на это вот с такой точки зрения». После этого никому, кроме историков математики, нет уже необходимости изучать сотни отдельных статей. Разрозненные выводы объединяются в одну простую доктрину, важные факты отделяются от шелухи, и прямой путь к желаемому выводу открыт для всех. Объём сведений, которые нужно изучать, сократился. Но это ещё не конец. После того как новый метод стал всеобщим достоянием, возникают новые вопросы, для решения которых он недостаточен, и снова начинаются поиски ответов, снова публикуются статьи, снова начинается процесс «расширения».
Как ей заниматься.
1. Формировать способность удерживать в голове образы, оперировать с ними - находить взаимосвязи, производить изменение этих объектов - добавлять и убирать объекты, менять их положение. То есть в голове создается картинка, которую человек рассматривает, в этом и заключается процесс мышления. Она может начать расплываться в силу несовершенства внимания человека.
2. Формировать: языки определяемых понятий, слов и словосочетаний их обозначающих; символьные языки - формул и высказываний, язык образов, рисунков, наиболее эффективные для исследуемой области математики. Понятно, что определяемые понятия должны быть строго определены, непротиворечивы, часто применимы к изучаемым объектам, в их терминах формулировка свойств должна упрощаться. Их словесные названия и связывающие словосочетания (например, “пересекающиеся прямые”) должны быть удобны для восприятия смысла. Язык символов позволяет компактно и строго производить громоздкие преобразования на бумаге. При этом меньше нагружается понятийное и образное мышление, используемое при решении задач в уме. На основе выбранных понятий, наработанных методов и доказанных теорем строится язык образов, который позволяет человеку очень быстро в уме оперировать информацией в данной области.
3. Делать эквивалентные преобразования, приводящие информацию к наиболее простому виду. Это, своего рода, процесс ее "причесывания" - обобщение, выявление сути, выбрасывание кусков, легко выводимых из остающихся данных. При преобразованиях с потерей информации оставляется самое существенное, важное, с большей вероятностью или с меньшими затратами, ведущее к результату. Полезно запомнить или записать в самом сжатом виде полученные данные, чтобы потом их можно было легко восстановить полностью. Можно также применять классификацию, чтобы сжать информацию и облегчить ее использование.
4. Четко фиксировать (на бумаге или в голове) и последовательно прорабатывать все возникающие вопросы и идеи.
5. Экономить критичные ресурсы, которыми могут быть - время, объем внимания, память, использование не развитых в данном человеке способностей. Для этого можно сначала заниматься наиболее простыми и с большей вероятностью приводящими к результату направлениями.
6. Использовать вспомогательные предметы, помогающие исследовать математические объекты - например, геометрические фигуры, механические модели, рисунки, записи на бумаге, чтобы разгрузить память и внимание. Можно воспользоваться компьютером для решения переборных задач, визуального отображения объектов, возможно, в будущем - для решения любой задачи.
7. До конца разобраться в каком-то вопросе, добиться полной строгости, чтобы потом на это опираться. На этом шаге ресурсы не экономятся, но это приводит к большой их экономии впоследствии. Часто нельзя решить задачу просто, а нужно до конца исследовать сложные объекты.
8. Использовать нечеткие образы для понятий, методов, планов дальнейшего исследования. В них могут быть неопределенные места и они, иногда, с трудом выражаются словами. Тем не менее, с этими образами не так сложно оперировать. По ходу дела они могут конкретизироваться. Мышление такими представлениями дает мощный и быстрый метод исследования.
9. Создавать новую обширную теорию для изучения какого-то одного вопроса. Она может быть сильно не похожа на исходную задачу.
10. Создавать систему теорем, способов представлений объектов, методов (алгоритмов) решения задач, теорий, позволяющих быстро решить наиболее широкий круг задач, затрачивая минимальное количество критичных ресурсов.
11. Сочетать вышеперечисленные методы, зачастую взаимоисключающие друг друга. Например, можно добиваться строгости в мелочах сразу по ходу рассуждений, полного представления в голове взаимосвязи объектов при сложной картине, развивать новые способности, новые методы и области математики, а можно производить длинную цепочку предположений, нечетко определять рассматриваемые ситуации, стараться решить задачу простыми методами, уходя от сложных операций с помощью того, что уже есть. Эти методы человек чередует в оптимальной для него последовательности. Если мышление расплывается, не удается давать четкие доказательства, то можно придумать цепочку простых задач с возрастающей сложностью и последовательно, до конца, в них разобраться.
ЗАКЛЮЧЕНИЕ.
Когда-то знаменитый Гаусс сказал: «Математика — это царица наук»; однако теперь-то мы понимаем, что она занимает в мире иное, куда более почётное положение: она является служанкой всех (и естественных, и гуманитарных) наук, помогая им, доставляя им адекватный аппарат для описания всевозможных фактов и явлений. Более того, математика — это та служанка, без которой и госпожа-то не является госпожой, без которой науку и за науку признать невозможно, ибо «уровень научности» той или иной дисциплины можно измерить объёмом применяемых в ней математических рассуждений, глубиной и содержательностью характерных для этой дисциплины дедуктивных выводов (вспомните наше замечание об употреблении во французском и английском языках слова science).
Сила математики в первую очередь заключается в том, что возникшие в её рамках числовые системы и формальные схемы доставляют нам некоторый «универсальный ключ», годный для отпирания всех на свете замков: они равно приложимы к физике и биологии, технике и социологии, астрономии и лингвистике. Математическая модель реальной ситуации — это математическая структура, объекты которой трактуются как идеализированные реальные «вещи» (или понятия), а абстрактные отношения между этими объектами — как конкретные связи между элементами действительности; такая модель позволяет составить компактную и легко обозримую сводку известных нам свойств изучаемых понятий, дающую возможность исчерпывающе их анализировать и даже предсказывать результаты будущих наблюдений, а ведь именно оправдывающиеся впоследствии предсказания составляют основной предмет гордости каждой науки, определяют её ценность. Эта универсальность математического знания дала основание выдающемуся физику Эйгену Вигнеру с некоторым даже недоумением говорить о «непостижимой приложимости математики к естественным наукам»; её же имел в виду и Ландау, когда он называл математические науки «сверхъестественными».
Как вытекает из вышеизложенного, современный стиль жизни в отсутствии математики маловероятен. Ибо, если мы не очень хорошо разбираемся в языке цифр, нам будет трудно достичь важных решений в выполнении повседневных задач. Будь то поход в магазин или покупка права страхования, или пересмотр дома в рамках бюджета, - знание математики является ключом, и, следовательно, необходимо.
Список использованных источников
Энциклопедия для детей. Т.11. Математика/Глав. ред.М.Д. Аксёнова. – М.: Авантаж, 1998.-688 с.
Гуманитариям о математике/Е.В. Шикин и др.; под ред. Е.В. Шикина. – «Агар»,1999. – 334с.
Что такое математика? /В.И.Арнольд. — М.: МЦНМО, 2008.–– 104 с.
http://www.allmath.ru/bestbooks.htm
http://www.exponenta.ru - Exponenta - образовательный математический сайт
http://www.gordia.ru/gm.php - математика жизни.
страница 1
скачать
Другие похожие работы: