NetNado
  Найти на сайте:

Учащимся

Учителям



1. /ЕДИНИЦЫ СИ.doc
2. /СТО/СТО.doc
3. /СТО/вопросы СТО.doc
4. /атом/5регистр устройства.doc
5. /атом/6радиоактивность.doc
6. /атом/7Лазеры.doc
7. /атом/8атомное ядро.doc
8. /атом/9энергия связи.doc
9. /атом/ЛР эл частицы.doc
10. /атом/Принцип соответствия.doc
11. /атом/Спектры.doc
12. /атом/Элемента?рные части?цы.doc
13. /атом/регистрация частиц.doc
14. /атом/таблица энергия покоя.doc
15. /кванты/5Виды излучений.doc
16. /кванты/6действия света.doc
17. /кванты/7давление света.doc
18. /кванты/8дуализм.doc
19. /мех колебания и волны/6 звук.doc
20. /мех колебания и волны/7 интерференц. дифракция.doc
21. /мех колебания и волны/зачет.doc
22. /оптика/5преломление.doc
23. /оптика/6Линзы.doc
24. /оптика/7Глаз.doc
25. /оптика/8интерференция .doc
26. /оптика/9дифракция.doc
27. /оптика/волн свойства.doc
28. /формулы.doc
29. /шпора.DOC
30. /эл.магн колебания/6 автоколебания ганератор на транзисторе.doc
31. /эл.магн колебания/Зачет эл.магн колеб.doc
Механические процессы в инерциальных системах счета протекают одинаково. Правило сложения скоростей: υ' =
Постулаты специальной теории относительности
Методы наблюдения и регистрации элементарных частиц Газоразрядный счетчик Гейгера
Радиоактивность
Light Amplification by Stimulated Emission of Radiation
Х а атомная масса, z заряд ядра (номер элемента) Число протонов в ядре Z; число нейтронов в ядре N
Лабораторная работа «Изучение треков заряженных частиц»
Принцип соответствия
Спектры. Спектральный анализ
Элемента́рная части́ца
Газоразрядный счетчик Гейгера
Тепловое Потери атомами энергии на излучение света компенсируются за счет энергии теплового движения атомов
Действия света Давление света Фотоэффект Тепловое действие
Давление света
Корпускулярно-волновой дуализм 17 век. Ньютон Свет поток частиц (корпускул)
Урок 7 09. 07 Тема урока: Звуковые волны Звуковые волны упругие волны, вызывающие у человека ощущение звука
Урок 8 09. 07 Тема урока: Интерференция волн. Принцип Гюйгенса. Явление интерференции возникает при наложении когерент­ных волн
Урок 4 Преломление
Правила построения изображения в линзе нарисовать линзу провести главную оптическую ось отметить точки О, f и 2F нарисовать предмет провести из крайней точки предмета два луча
Урок Глаз. Зрение
Интерференция света
Урок 5 Дифракция света
Условие mах: ∆=kλ; min: ∆=(2k-1)λ/2 Дифракция
Υ0∙t+(a∙t2)/2 S= (υ
Урок 6 10. 07 Тема урока: Автоколебания. Генератор незатухающих колебаний на транзисторе Так как в любом колебательном контуре все-таки есть потери энергии на нагревание проводов, электромагнитные колебания в нем являются затухающими
Зачет «Электромагнитные колебания. Переменный ток» Колебательный контур

скачать doc

Лабораторная работа «Изучение треков заряженных частиц»

Цель работы: получить экспериментальные навыки в чтении фотографий движения заряженных частиц, сфотографированных в камере Вильсона.

Приборы и материалы: фотографии треков, прозрачная бумага (калька) или копировальная бумага, угольник, циркуль или лекало, карандаш.

Треки заряженных частиц в камере Вильсона представляют собой цепочки микроскопических капелек жидкости (воды или спирта), образовавшиеся вследствие конденсации пересыщенного пара этой жидкости на ионах. Длина трека зависит от начальной энергии заряженной частицы и плотности окружающей среды. Толщина трека зависит от заряда и скорости частицы: она тем больше, чем больше заряд частицы и чем меньше её скорость. При движении заряженной частицы в магнитном поле трек её получается искривлённым. По изменению радиуса кривизны трека можно определить направление движения заряженной частицы и изменение её скорости.

На фотографии видны треки частиц, движущихся в магнитном поле индукцией В = 2,2 Тл. Вектор индукции магнитного поля перпендикулярен плоскости фотографии. Нижний трек принадлежит протону, имеющему начальную энергию 1,6 МэВ.
Порядок выполнения работы

1. С помощью кальки или копировальной бумаги перечертите треки частиц и масштаб фотографии.

2. Определите направление движения частиц и направление силовых линий магнитного поля. Объясните, почему трек протона к концу пробега становится толще.

3. По величине энергии протона вычислите отношение его полной массы к массе покоя и покажите, что изменением массы следует пренебречь.

4. Зная, что верхний трек принадлежит частице, имеющей одинаковую с протоном начальную скорость, определите отношение заряда к массе для этой частицы. Какой частице принадлежит этот трек? Почему он толще трека протона?

5. Вычислите начальную энергию частицы, оставившей верхний след.
Дополнительные задания

1. Фотографии треков заряженных частиц, полученных в камере Вильсона.



  1. В какую сторону двигались α-частицы?

  2. Почему треки α-частиц искривлены?

  3. Как был направлен вектор магнитной индукции?

  4. Почему меняется радиус кривизны и толщина треков α-частиц к концу их пробега?

2. Фотографии треков заряженных частиц, полученных в пузырьковой камере.



  1. Почему трек электрона имеет форму спирали?

  2. В каком направлении двигался электрон?

  3. Как был направлен вектор магнитной индукции?




  1. Фотографии треков заряженных частиц, полученных в фотоэмульсии




  1. Почему трек ядер имеет разную толщину?

  2. Какой трек принадлежит ядру атома магния, кальция, железа?

  3. Какой вывод можно сделать из сравнения толщины треков ядер атомов различных элементов?

  4. Чем отличаются треки частиц, полученные в фотоэмульсии, от треков частиц в камере Вильсона и пузырьковой камере?


Ответы

ЛР

2. Частицы движутся снизу вверх. Силовые линии магнитного поля направлены перпендикулярно плоскости рисунка на читателя.

3. Энергия протона Ep = 939,8 МэВ. Отношение γ = 939,8/938,2 = 1,002.

4. Начальная скорость протона. Из уравнения движения

заряженных частиц в магнитном поле: q /m = /(BR) = ½ ·qр /mр= 0,48·108кл/кг.

5. Eα=4 Ep=6,4МэВ

Дополнительные задания

1. 1. Cверху вниз. 2. Камера Вильсона находится в магнитном поле. 3. Перпендикулярно фотографии сверху вниз. 4. Уменьшалась скорость -частиц.

2. 1. Потому что он двигался в магнитном поле с убывающей скоростью. 2. От внешнего витка спирали к её центру. 3. Перпендикулярно фотографии сверху вниз.

3. 1. Не одинаковы заряды ядер. 2. Левый трек принадлежит ядру атома магния, средний – ядру кальций, правый – ядру железа. 3. Толщина трека тем больше, чем больше заряд ядра атома. 4. Треки частиц в фотоэмульсии короче и толще и имеют неровные края.