1. /МКТ/1положения МКТ.doc 2. /МКТ/2осн ур МКТ.doc 3. /МКТ/3температура.doc 4. /МКТ/4ур сост ид газа.doc 5. /МКТ/5реальные газы.doc 6. /МКТ/6фазовые переходы.doc 7. /МКТ/7насыщ пар.doc 8. /МКТ/8пов натяжение.doc 9. /МКТ/9кристаллы.doc 10. /МКТ/Инструкция по выращиванию кристалла.doc 11. /м.поле/1магн поле.doc 12. /м.поле/2сила Ампера.doc 13. /м.поле/3сила Лоренца.doc 14. /м.поле/4 м поле в веществе.doc 15. /м.поле/5Эл.м. индукция.doc 16. /м.поле/~$агн поле.doc 17. /м.поле/~$ила Ампера.doc 18. /м.поле/Обобщение.doc 19. /механика/1равномерное дв.doc 20. /механика/2равноускренное дв.doc 21. /механика/3движ по окружности.doc 22. /механика/4силы.doc 23. /механика/5статика.doc 24. /механика/6ЗСИ, ЗСЭ.doc 25. /термодинамика/1Вн энергия.doc 26. /термодинамика/2Работа.doc 27. /термодинамика/3 I закон.doc 28. /термодинамика/4Теплоемкость.doc 29. /термодинамика/5Тепловые двигатели.doc 30. /ток в средах/1металлы.doc 31. /ток в средах/2полупроводники.doc 32. /ток в средах/3электролиты.doc 33. /ток в средах/4вакуум.doc 34. /ток в средах/5газ.doc 35. /эл ток/1сила тока, Закон Ома.doc 36. /эл ток/2ЭДС.doc 37. /электростатика/1эл.заряд, закон Кулона.doc 38. /электростатика/2напряженность.doc 39. /электростатика/3потенциал.doc 40. /электростатика/4Проводники и диэлектрики.doc 41. /электростатика/5емкость.doc | Урок 1 Основные положения молекулярно-кинетической теории (мкт) Температура. Способы ее измерения Уравнение Ван-дер-Ваальса Урок Фазовые переходы Фаза равновесное состояние вещества, отличающееся по своим физическим свойствам от других состояний Урок Насыщенный пар Урок 8 Поверхностное натяжение Закон Гука σ = Е·ε выполняется для упругих деформаций Инструкция по выращиванию кристалла «магнитное поле» Урок 2 Сила Ампера. Сила Лоренца Сила Ампера сила, действующая на проводник с током в магнитном поле Урок Сила Лоренца Сила Лоренца сила, действующая на движущиеся в магнитном поле заряды Урок Магнитное поле в веществе Экспериментальные исследования показали, что все вещества в большей или меньшей степени обладают магнитными свойствами. Повторение. Замкнутый контур, помещенный в магнитное поле, пронизывается магнитным потоком Равномерное движение. Относительность движения. Механическое движение Урок Законы сохранения Урок 4 Теплоемкость газов и твердых тел Урок 5 Тепловые двигатели. Кпд Урок Электрический ток в металлах Электрический ток в полупроводниках Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы. Электролитическая диссоциация Урок 4 Электрический ток в вакууме Урок 5 Электрический ток в газах Урок 1 Условия существования электрического тока. Сила тока Урок эдс Урок Электризация. Электрический заряд Урок Электрическое поле Рок Потенциал. Работа электрического поля Если электрическое поле однородно, то Урок 4 Проводники в электрическом поле Урок Электроемкость. Конденсаторы
|
скачать doc Электрический ток в полупроводникахУ


дельное сопротивление полупроводников с увеличением температуры резко уменьшается.
При температурах, близких к абсолютному нулю, удельное сопротивление полупроводников очень велико. При низких температурах полупроводник ведет себя как диэлектрик.
По мере повышения температуры удельное сопротивление быстро уменьшается.
Строение полупроводниковК полупроводникам относятся некоторые элементы IV группы таблицы Менделеева,
например, кремний Si или германий Ge.
Кремний — четырехвалентный элемент. Это означаем внешней оболочке атома имеются четыре электрона, слабо связанные с ядром. Число ближайших соседей каждого кремния также равно четырем.
Взаимодействие пары соседних атомов осуществляется с помощью ковалентной связи
, в образовании этой связи от каждого атома участвует по одному валентному электрону.
Каждый атом образует четыре связи с соседними, и любой валентный электрон может двигаться по одной из них. Дойдя до соседнего атома, он может перейти к следующему, а затем дальше вдоль всего кристалла. Валентные электроны принадлежат всему кристаллу.
Парноэлектронные связи кремния достаточно прочны и при низких температурах не разрываются. Поэтому кремний
при низкой температуре не проводит электрический ток.
Механизм проводимости полупроводников
Э
лектронная проводимость. При нагревании кремния кинетическая энергия частиц повышается, и наступает разрыв отдельных связей
. Проводимость полупроводников, обусловленную наличием у них свободных электронов, называют электронной проводимостью. 
При повышении температуры число разорванных связей, а значит, и свободных электронов увеличивается. При нагревании от 300 до 700 К число свободных носителей заряда увеличивается от 10
17 до 10
24 м
-3. Это
приводит к уменьшению сопротивления. Дырочная проводимость. При разрыве связи образуется вакантное место с недостающим электроном. Его называют
дыркой.Положение дырки в кристалле не является неизменным. Один из электронов, обеспечивающих связь атомов, перескакивает на место образовавшейся дырки и восстанавливает здесь парноэлектронную связь, а там, откуда перескочил этот электрон, образуется новая дырка. Таким образом, дырка может перемещаться по всему кристаллу.
При наличии электрического поля возникает упорядоченное перемещение дырок, и, таким образом, к электрическому току свободных электронов добавляется электрический ток, связанный с перемещением дырок. Направление движения дырок противоположно направлению движения электронов.
Таким образом, собственная проводимость полупроводников-
электронно-дырочная.Проводимость полупроводников при наличии примесей.
Донорные примеси.
Примеси, легко отдающие электроны
(элементы V группы таблицы Менделеева, например, мышьяк As)
Полупроводники, имеющие донорные примеси – полупроводники n-типа (n-негатив).
В полупроводниках n-типа основными носителями заряда являются электроны.
А
кцепторные примеси.
Элементы III группы таблицы Менделеева, например, индий In или галий Ga.
Полупроводники, имеющие акцепторные примеси – полупроводники p-типа (p-позитив).
В полупроводниках p-типа основными носителями заряда являются дырки
p - n переход p


- n переход – контактный слой двух примесных полупроводников p и n типа.

.
В

ольт-амперная характеристика (ВАХ) кремниевого диода. На графике использованы различные шкалы для положительных и отрицательных напряжений


Uн
Применение диода: выпрямление переменного тока.
Коэффициент выпрямления k = Iп/Iо ≈ 10
6Полупроводниковый транзистор.
П

реимущества полупроводниковых приборов:
Малые размеры и масса
Длительный срок службы
Высокая механическая прочность
Высокий КПД
Недостатки:
Зависимость от температуры; работает только при температуре от -70ºС до 80ºС для Ge и до 125ºС для Si.

Применение полупроводникового транзистора: усиление силы тока и напряжения.