NetNado
  Найти на сайте:

Учащимся

Учителям



1. /МКТ/1положения МКТ.doc
2. /МКТ/2осн ур МКТ.doc
3. /МКТ/3температура.doc
4. /МКТ/4ур сост ид газа.doc
5. /МКТ/5реальные газы.doc
6. /МКТ/6фазовые переходы.doc
7. /МКТ/7насыщ пар.doc
8. /МКТ/8пов натяжение.doc
9. /МКТ/9кристаллы.doc
10. /МКТ/Инструкция по выращиванию кристалла.doc
11. /м.поле/1магн поле.doc
12. /м.поле/2сила Ампера.doc
13. /м.поле/3сила Лоренца.doc
14. /м.поле/4 м поле в веществе.doc
15. /м.поле/5Эл.м. индукция.doc
16. /м.поле/~$агн поле.doc
17. /м.поле/~$ила Ампера.doc
18. /м.поле/Обобщение.doc
19. /механика/1равномерное дв.doc
20. /механика/2равноускренное дв.doc
21. /механика/3движ по окружности.doc
22. /механика/4силы.doc
23. /механика/5статика.doc
24. /механика/6ЗСИ, ЗСЭ.doc
25. /термодинамика/1Вн энергия.doc
26. /термодинамика/2Работа.doc
27. /термодинамика/3 I закон.doc
28. /термодинамика/4Теплоемкость.doc
29. /термодинамика/5Тепловые двигатели.doc
30. /ток в средах/1металлы.doc
31. /ток в средах/2полупроводники.doc
32. /ток в средах/3электролиты.doc
33. /ток в средах/4вакуум.doc
34. /ток в средах/5газ.doc
35. /эл ток/1сила тока, Закон Ома.doc
36. /эл ток/2ЭДС.doc
37. /электростатика/1эл.заряд, закон Кулона.doc
38. /электростатика/2напряженность.doc
39. /электростатика/3потенциал.doc
40. /электростатика/4Проводники и диэлектрики.doc
41. /электростатика/5емкость.doc
Урок 1 Основные положения молекулярно-кинетической теории (мкт)
Температура. Способы ее измерения
Уравнение Ван-дер-Ваальса
Урок Фазовые переходы Фаза равновесное состояние вещества, отличающееся по своим физическим свойствам от других состояний
Урок Насыщенный пар
Урок 8 Поверхностное натяжение
Закон Гука σ = Е·ε выполняется для упругих деформаций
Инструкция по выращиванию кристалла
«магнитное поле»
Урок 2 Сила Ампера. Сила Лоренца Сила Ампера сила, действующая на проводник с током в магнитном поле
Урок Сила Лоренца Сила Лоренца сила, действующая на движущиеся в магнитном поле заряды
Урок Магнитное поле в веществе Экспериментальные исследования показали, что все вещества в большей или меньшей степени обладают магнитными свойствами.
Повторение. Замкнутый контур, помещенный в магнитное поле, пронизывается магнитным потоком
Равномерное движение. Относительность движения. Механическое движение
Урок Законы сохранения
Урок 4 Теплоемкость газов и твердых тел
Урок 5 Тепловые двигатели. Кпд
Урок Электрический ток в металлах
Электрический ток в полупроводниках
Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы. Электролитическая диссоциация
Урок 4 Электрический ток в вакууме
Урок 5 Электрический ток в газах
Урок 1 Условия существования электрического тока. Сила тока
Урок эдс
Урок Электризация. Электрический заряд
Урок Электрическое поле
Рок Потенциал. Работа электрического поля Если электрическое поле однородно, то
Урок 4 Проводники в электрическом поле
Урок Электроемкость. Конденсаторы

скачать doc

Урок 3. Электрический ток в электролитах



Электролиты – вещества, растворы или расплавы которых проводят электрический ток (водные растворы неорганических кислот, солей и оснований). Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы.
Электролитическая диссоциация – расщепление нейтральной молекулы на ионы.
Электролиз - прохождение электрического тока через электролит, сопровождающееся выделением веществ на электродах. Например,
При подключении электродов к источнику тока ионы под действием электрического поля начинают упорядоченное движение: положительные ионы меди движутся к катоду, а отрицательно заряженные ионы хлора – к аноду. Достигнув катода, ионы меди нейтрализуются избыточными электронами катода и превращаются в нейтральные атомы, оседающие на катоде (восстановление). Нейтральные атомы меди отлагаются в виде твердого осадка на катоде. Таким путем можно получить химически чистую медь. Ионы хлора, достигнув анода, отдают по одному электрону. После этого нейтральные атомы хлора соединяются попарно и образуют молекулы хлора Cl2. Хлор выделяется на аноде в виде пузырьков.

Закон Фарадея (1833 г) определяет количества первичных продуктов, выделяющихся на электродах при электролизе:

Масса m вещества, выделившегося на электроде, прямо пропорциональна заряду Q, прошедшему через электролит:

m = kQ = kIt

k - электрохимический эквивалент.

Масса выделившегося на электроде вещества равна массе всех ионов, пришедших к электроду:

m0 и q0 – масса и заряд одного иона, N = Q/q 0 – число ионов, пришедших к электроду при прохождении через электролит заряда Q. Таким образом, электрохимический эквивалент k равен отношению массы m0 иона данного вещества к его заряду q0.

Так как заряд иона равен произведению валентности вещества n на элементарный заряд e (q0 = ne), то выражение для электрохимического эквивалента k можно записать в виде



Здесь NA – постоянная Авогадро, M = m0NA – молярная масса вещества, F = eNAпостоянная Фарадея. F = eNA = 96485 Кл / моль

Постоянная Фарадея численно равна заряду, который необходимо пропустить через электролит для выделения на электроде одного моля одновалентного вещества.

Закон Фарадея для электролиза приобретает вид:

Применение электролиза

1. Получение чистых металлов

2. Гальванопластика - изготовление рельефных копий

3. Гальваностегия - нанесение покрытий ( Ni, Cr, Ag, Au)



Детали автомобиля, покрытые

слоем металла при электролизе

Детали мебельной фурнитуры,

покрытые слоем металла при электролизе