1. /билетыфизика 2сем/11.doc 2. /билетыфизика 2сем/13..doc 3. /билетыфизика 2сем/16..doc 4. /билетыфизика 2сем/17..doc 5. /билетыфизика 2сем/18..doc 6. /билетыфизика 2сем/21..doc 7. /билетыфизика 2сем/22.doc 8. /билетыфизика 2сем/5 Примеры расчёта полей.doc 9. /билетыфизика 2сем/5а Примеры расчёта полей.doc 10. /билетыфизика 2сем/Закон Ома для плотности тока. Обобщенный закон Ома для участка цепи..doc 11. /билетыфизика 2сем/Теорема О-Гаусса для электростатического поля в вакууме..doc 12. /билетыфизика 2сем/Электрическая ёмкость уединённого проводника и конденсатора.doc 13. /билетыфизика 2сем/к10омуПроводники в электростатическом поле.doc 14. /билетыфизика 2сем/к13омуЭнергия заряженного проводника, конденсатора, сист. проводников и зарядов. Энергия электрос.doc 15. /билетыфизика 2сем/к16омуМагнитное поле Вектор магнитной индукции Сила Лоренца Закон Ампера.doc 16. /билетыфизика 2сем/к17омуЗакон Био-Савара-Лапласа. Примеры расчета простейших полей тока..doc 17. /билетыфизика 2сем/к1омуЗакон Кулона Закон сохранения электрического заряда.doc 18. /билетыфизика 2сем/к1омуНапряжённость электрического поля.doc 19. /билетыфизика 2сем/к1омуПринцип суперпозиции полей Поле электрического диполя.doc 20. /билетыфизика 2сем/к20омуЗакон полного тока для магнитного поля в вакууме.doc 21. /билетыфизика 2сем/к2омуТеорема О-Гаусса для поля в веществе Вектор электрического смещения .doc 22. /билетыфизика 2сем/к4омуПотенциал электростатического поля.doc 23. /билетыфизика 2сем/к4омуРабота сил электростатического поля.doc 24. /билетыфизика 2сем/к6омуПоляризация диэлектрика Вектор поляризованности.doc 25. /билетыфизика 2сем/к8омуУсловия для электростатического поля на границе раздела сред.doc 26. /билетыфизика 2сем/с1по10билеты.doc | Электрическая емкость уединенного проводника Закон сохранения энергии поля Закон Ампера. Контур с током. Магнитный момент в витке с током Закон Био-Савара-Лапласа. Применение закона и расчеты магнитной индукции прямолинейного проводника V, в и Fm, для положительного и отрицательного зарядов частицы. Модуль силы равен Fm= 1. Магнитным потоком (потоком вектора в маг—твои вщукцп) Закон Фарадея-Максвела. Вывод этого уравнения из закона сохранения энергии. Закон Ленца Зарядов и, =>, само поле центрально-симметричны относительно центра Пример №1: поле заряда, равномерно распределенного с объемной плотностью р по объему кругового цилиндра, радиус Закон Ома для плотности тока. Обобщенный закон Ома для участка цепи: плотность тока проводимости равна произведению удельной электрической проводимости проводника на напряжённость электрического поля в проводнике R между ними. Именно поэтому напряженность Еi поля точечного заряда qi, также обратно пропорциональна квадрату расстояния r Электрическая ёмкость уединённого проводника и конденсатора: уединенным проводником Проводники в электростатическом поле: в металлических проводниках имеются свободные электроны, которые могут под действием электрического поля перемещаться по всему проводнику Электрическая энергия заряженного уединенного проводника: W М всегда перпендикулярна вектору скорости Закон Био-Савара-Лапласа. Примеры расчета простейших полей тока: при наложении магнитных полей справедлив принцип суперпозиции, т е. принцип независимого действия полей: B= ( l ) Закон сохранения электрического заряда. Закон Кулона: закон сохранения электрического заряда: алгебраическая сумма электрических зарядов тел или частиц, образующих электрически изолированную систему, Апряжённость электрического поля: векторная величина е Принцип суперпозиции полей. Поле диполя: (принцип независимости действия электрических полей) Закон полного тока для магнитного поля в вакууме Согласно этой теореме, поток Потенциал электростатического поля: Из формул W ) в точку 2 (потенциал Состоящая в том, что в любом макроскопически малом его объеме Условия для электростатического поля на границе раздела сред: первое условие для напряженности поля: E Закон сохранения эл заряда. Электрический заряд замкнутой системы сохраняется. Иными словами, алгебраическая сумма зарядов всех тел в системе не меняется со временем
|
скачать doc Проводники в электростатическом поле: В металлических проводниках имеются свободные электроны, которые могут под действием электрического поля перемещаться по всему проводнику. Они возникают, когда металл переходит из газообразного состояния в жидкое, а затем в твердое. При конденсации металла происходит обобществление части валентных электронов, которые отделяются от «своих» атомов и образуют электронный газ в металле. Электрические свойства проводников в условиях электростатики определяются поведением электронов проводимости во внешнем электростатическом поле. В отсутствие внешнего поля электрические поля электронов проводимости и «атомных остатков» – положительных ионов металла – взаимно компенсируются. Если металлический проводник внесен во внешнее электростатическое поле, то под действием этого поля электроны проводимости перераспределяются в проводнике таким образом, чтобы в любой точке внутри проводника электрическое поле электронов проводимости и положительных ионов скомпенсировало внешнее поле. Перераспределение зарядов в проводнике под влиянием внешнего электростатического поля наз. явл. электростатической индукции. Возникаю
щие при этом на проводнике заряды, численно равные друг другу, но противоположные по знакам, наз. индуцированными или наведенными зарядами.Индуцированные заряды исчезают, как только проводник удаляется из электрического поля. Для проводников в электростатическом поле выполняются следующие условия: а) всюду внутри проводника напряженность поля Е=0, а у его поверхности Е=Е
n (E
=0); б) весь объем проводника эквипотенциален, т.к., в любой точке внутри проводника d/d
l=–E
l=
=–Ecos(E, dl)=0; в) поверхность проводника явл. эквипотенциальной, т. к. для любой линии на этой поверхности d/d
l=–E
=0; г) нескомпенсированные заряды располагаются в проводнике только на его поверхности, т. к., согласно теореме Остроградского-Гаусса, заряд q
, охватываемый произвольной замкнутой поверхностью S, проведенной внутри проводника, = 0: q=
0EdS=0, п

оскольку во всех точках поверхности
S, находящихся внутри проводника, напряженность поля Е=0.
Силы, действующие на заряженные тела наз. пондермоторными силами. Поверхностная плотность f=dF/dS пондермоторных сил, действующих на заряженный проводник в вакууме, равна f=
2n/(2
0)= =
0E
2n/2, где – заряд, n – вектор внешней нормали.