NetNado
  Найти на сайте:

Учащимся

Учителям



1. /билетыфизика 2сем/11.doc
2. /билетыфизика 2сем/13..doc
3. /билетыфизика 2сем/16..doc
4. /билетыфизика 2сем/17..doc
5. /билетыфизика 2сем/18..doc
6. /билетыфизика 2сем/21..doc
7. /билетыфизика 2сем/22.doc
8. /билетыфизика 2сем/5 Примеры расчёта полей.doc
9. /билетыфизика 2сем/5а Примеры расчёта полей.doc
10. /билетыфизика 2сем/Закон Ома для плотности тока. Обобщенный закон Ома для участка цепи..doc
11. /билетыфизика 2сем/Теорема О-Гаусса для электростатического поля в вакууме..doc
12. /билетыфизика 2сем/Электрическая ёмкость уединённого проводника и конденсатора.doc
13. /билетыфизика 2сем/к10омуПроводники в электростатическом поле.doc
14. /билетыфизика 2сем/к13омуЭнергия заряженного проводника, конденсатора, сист. проводников и зарядов. Энергия электрос.doc
15. /билетыфизика 2сем/к16омуМагнитное поле Вектор магнитной индукции Сила Лоренца Закон Ампера.doc
16. /билетыфизика 2сем/к17омуЗакон Био-Савара-Лапласа. Примеры расчета простейших полей тока..doc
17. /билетыфизика 2сем/к1омуЗакон Кулона Закон сохранения электрического заряда.doc
18. /билетыфизика 2сем/к1омуНапряжённость электрического поля.doc
19. /билетыфизика 2сем/к1омуПринцип суперпозиции полей Поле электрического диполя.doc
20. /билетыфизика 2сем/к20омуЗакон полного тока для магнитного поля в вакууме.doc
21. /билетыфизика 2сем/к2омуТеорема О-Гаусса для поля в веществе Вектор электрического смещения .doc
22. /билетыфизика 2сем/к4омуПотенциал электростатического поля.doc
23. /билетыфизика 2сем/к4омуРабота сил электростатического поля.doc
24. /билетыфизика 2сем/к6омуПоляризация диэлектрика Вектор поляризованности.doc
25. /билетыфизика 2сем/к8омуУсловия для электростатического поля на границе раздела сред.doc
26. /билетыфизика 2сем/с1по10билеты.doc
Электрическая емкость уединенного проводника
Закон сохранения энергии поля
Закон Ампера. Контур с током. Магнитный момент в витке с током
Закон Био-Савара-Лапласа. Применение закона и расчеты магнитной индукции прямолинейного проводника
V, в и Fm, для положительного и отрицательного зарядов частицы. Модуль силы равен Fm=
1. Магнитным потоком (потоком вектора в маг—твои вщукцп)
Закон Фарадея-Максвела. Вывод этого уравнения из закона сохранения энергии. Закон Ленца
Зарядов и, =>, само поле центрально-симметричны относительно центра
Пример №1: поле заряда, равномерно распределенного с объемной плотностью р по объему кругового цилиндра, радиус
Закон Ома для плотности тока. Обобщенный закон Ома для участка цепи: плотность тока проводимости равна произведению удельной электрической проводимости проводника на напряжённость электрического поля в проводнике
R между ними. Именно поэтому напряженность Еi поля то­чечного заряда qi, также обратно пропорци­ональна квадрату расстояния r
Электрическая ёмкость уединённого проводника и конденсатора: уединенным проводником
Проводники в электростатическом поле: в металлических проводниках имеются свободные электроны, кото­рые могут под действием электрического поля перемещаться по всему проводнику
Электрическая энергия заряженного уединенного проводника: W
М всегда перпендикулярна век­тору скорости
Закон Био-Савара-Лапласа. Примеры расчета простейших полей тока: при наложении магнитных полей справедлив принцип су­перпозиции, т е. принцип независимого дей­ствия полей: B= ( l )
Закон сохранения электрического заряда. Закон Кулона: закон сохранения электрического заряда: алгебраическая сумма электрических зарядов тел или частиц, образующих электрически изолированную систему,
Апряжённость электрического поля: векторная величина е
Принцип суперпозиции полей. Поле диполя: (прин­цип независимости действия электриче­ских полей)
Закон полного тока для магнитного поля в вакууме
Согласно этой теореме, поток
Потенциал электростатического поля: Из формул W
) в точку 2 (потенциал 
Состоящая в том, что в любом макроскопически малом его объеме
Условия для электростатического поля на границе раздела сред: первое условие для напряженности поля: E
Закон сохранения эл заряда. Электрический заряд замкнутой системы сохраняется. Иными словами, алгебраическая сумма зарядов всех тел в системе не меняется со временем

скачать doc

22.Явление эл. магнитной индукции. Закон Фарадея-Максвела. Вывод этого уравнения из закона сохранения энергии. Закон Ленца.

3
. Открытое Фарадеем явление получило название электромагнитной индукции. Оно наряду с обнаруженным им же (1821) явлением вращения прямолинейного проводника с током вокруг полосового магнита явилось той основой, на базе которой в последу­ющие годы были созданы электрические двигатели, генераторы и трансформаторы. Поэтому Фарадей заслуженно считается одним из основателей электротехники.

Индукционный ток проводимости в замкнутой цепи может возникнуть только под действием сторонних сил. Соответствующая им э.д.с. называется электродввжукцей силой электромагнитной индукции инд

Дальнейшие исследования индукционного тока в проводящих контурах различной формы и размеров показали справедливость следующего закона Фарадея:

э
.д.с. электромагнитной индукции в контуре пропорциональна скорости изменения магнитного потока Фm сквозь поверх­ность, натянутую на этот контур:

где k коэффициент пропорциональности. Э.д.с. электромагнитной индукции не зави­сит от того, чем именно вызвано изменение магнитного потока — деформацией кон­тура, его перемещением в магнитном поле или изменением самого поля. 4. Профессор Петербургского университета Э. X. Ленц исследовал связь между напра­влением индукционного тока и характером вызвавшего его изменения магнитного потока. Он установил (1833) следующий закон — правило Ленца:

при всяком изменении магнитного потока сквозь поверхность, натянутую на замкнутый проводящий контур, в последнем возникает индукционный ток такого направления, что его магнитное поле противодействует изменению магнитного потока.

Так, например, при приближении полосового магнита к замкнутой на гальванометр катушке (рис. 25.3) в ней наводится индукционный ток, который своим магнитным действием препятствует приближению магнита и связанному с этим возрастанию магнитного потока сквозь витки катушки. При удалении магнита от катушки в ней наводится ток противоположного направления, который своим магнитным действием также препятствует движению магнита. Легко проверить, что внутри катушки векторы магнитной индукции поля магнита и поля индукционного тока в первом случае направлены в противоположные стороны, а во втором — в одну и ту же сторону.