1. /билетыфизика 2сем/11.doc 2. /билетыфизика 2сем/13..doc 3. /билетыфизика 2сем/16..doc 4. /билетыфизика 2сем/17..doc 5. /билетыфизика 2сем/18..doc 6. /билетыфизика 2сем/21..doc 7. /билетыфизика 2сем/22.doc 8. /билетыфизика 2сем/5 Примеры расчёта полей.doc 9. /билетыфизика 2сем/5а Примеры расчёта полей.doc 10. /билетыфизика 2сем/Закон Ома для плотности тока. Обобщенный закон Ома для участка цепи..doc 11. /билетыфизика 2сем/Теорема О-Гаусса для электростатического поля в вакууме..doc 12. /билетыфизика 2сем/Электрическая ёмкость уединённого проводника и конденсатора.doc 13. /билетыфизика 2сем/к10омуПроводники в электростатическом поле.doc 14. /билетыфизика 2сем/к13омуЭнергия заряженного проводника, конденсатора, сист. проводников и зарядов. Энергия электрос.doc 15. /билетыфизика 2сем/к16омуМагнитное поле Вектор магнитной индукции Сила Лоренца Закон Ампера.doc 16. /билетыфизика 2сем/к17омуЗакон Био-Савара-Лапласа. Примеры расчета простейших полей тока..doc 17. /билетыфизика 2сем/к1омуЗакон Кулона Закон сохранения электрического заряда.doc 18. /билетыфизика 2сем/к1омуНапряжённость электрического поля.doc 19. /билетыфизика 2сем/к1омуПринцип суперпозиции полей Поле электрического диполя.doc 20. /билетыфизика 2сем/к20омуЗакон полного тока для магнитного поля в вакууме.doc 21. /билетыфизика 2сем/к2омуТеорема О-Гаусса для поля в веществе Вектор электрического смещения .doc 22. /билетыфизика 2сем/к4омуПотенциал электростатического поля.doc 23. /билетыфизика 2сем/к4омуРабота сил электростатического поля.doc 24. /билетыфизика 2сем/к6омуПоляризация диэлектрика Вектор поляризованности.doc 25. /билетыфизика 2сем/к8омуУсловия для электростатического поля на границе раздела сред.doc 26. /билетыфизика 2сем/с1по10билеты.doc | Электрическая емкость уединенного проводника Закон сохранения энергии поля Закон Ампера. Контур с током. Магнитный момент в витке с током Закон Био-Савара-Лапласа. Применение закона и расчеты магнитной индукции прямолинейного проводника V, в и Fm, для положительного и отрицательного зарядов частицы. Модуль силы равен Fm= 1. Магнитным потоком (потоком вектора в маг—твои вщукцп) Закон Фарадея-Максвела. Вывод этого уравнения из закона сохранения энергии. Закон Ленца Зарядов и, =>, само поле центрально-симметричны относительно центра Пример №1: поле заряда, равномерно распределенного с объемной плотностью р по объему кругового цилиндра, радиус Закон Ома для плотности тока. Обобщенный закон Ома для участка цепи: плотность тока проводимости равна произведению удельной электрической проводимости проводника на напряжённость электрического поля в проводнике R между ними. Именно поэтому напряженность Еi поля точечного заряда qi, также обратно пропорциональна квадрату расстояния r Электрическая ёмкость уединённого проводника и конденсатора: уединенным проводником Проводники в электростатическом поле: в металлических проводниках имеются свободные электроны, которые могут под действием электрического поля перемещаться по всему проводнику Электрическая энергия заряженного уединенного проводника: W М всегда перпендикулярна вектору скорости Закон Био-Савара-Лапласа. Примеры расчета простейших полей тока: при наложении магнитных полей справедлив принцип суперпозиции, т е. принцип независимого действия полей: B= ( l ) Закон сохранения электрического заряда. Закон Кулона: закон сохранения электрического заряда: алгебраическая сумма электрических зарядов тел или частиц, образующих электрически изолированную систему, Апряжённость электрического поля: векторная величина е Принцип суперпозиции полей. Поле диполя: (принцип независимости действия электрических полей) Закон полного тока для магнитного поля в вакууме Согласно этой теореме, поток Потенциал электростатического поля: Из формул W ) в точку 2 (потенциал Состоящая в том, что в любом макроскопически малом его объеме Условия для электростатического поля на границе раздела сред: первое условие для напряженности поля: E Закон сохранения эл заряда. Электрический заряд замкнутой системы сохраняется. Иными словами, алгебраическая сумма зарядов всех тел в системе не меняется со временем
|
скачать doc Закон Био-Савара-Лапласа. Примеры расчета простейших полей тока: при наложении магнитных полей справедлив принцип суперпозиции, т. е. принцип независимого действия полей: B=
(l)dB [1], где dB – магнитная индукция магнитного поля малого элемента d
l проводника с током, а интегрирование проводится по всей длине
l проводника. Магнитная индукция поля постоянного электрического тока
I в вакууме удовлетворяет закону Био – Савара – Лапласа: dB=k(
I/r
3)[dl r]. dl=d
l j/
j – плотность тока в элементе d
l проводника; r – радиус-вектор, проведенный из этого элемента проводника в рассматриваемую точку С поля (рис.); k – коэффициент пропорциональности. Вектор dB направлен в точке С перпендикулярно плоскости векторов dl и r по правилу буравчика. Коэффициент пропорциональности k в законе Био – Савара – Лапласа зависит от выбора системы единиц. В СИ это размерная величина, равная: k=
0/4, где
0=410
–7 Гн/м – магнитная постоянная. Т. о., в СИ закон Био – Савара – Лапласа имеет вид dB=(
0/4)(
I/r
3)[dl r] [2], Т. к. |[dl r]|=d
l /r sin =r
2 d, где – угол, под которым виден элемент d
l проводника из точки С поля, то |dB|=
0I d/(4r). Из [1] и [2] следует, что магнитная индукция поля, создаваемого в вакууме током
I, идущим по проводу конечной длины и любой формы, равна: B=(
0I/4)
(l)[dl r]/r
3.