1. /билетыфизика 2сем/11.doc 2. /билетыфизика 2сем/13..doc 3. /билетыфизика 2сем/16..doc 4. /билетыфизика 2сем/17..doc 5. /билетыфизика 2сем/18..doc 6. /билетыфизика 2сем/21..doc 7. /билетыфизика 2сем/22.doc 8. /билетыфизика 2сем/5 Примеры расчёта полей.doc 9. /билетыфизика 2сем/5а Примеры расчёта полей.doc 10. /билетыфизика 2сем/Закон Ома для плотности тока. Обобщенный закон Ома для участка цепи..doc 11. /билетыфизика 2сем/Теорема О-Гаусса для электростатического поля в вакууме..doc 12. /билетыфизика 2сем/Электрическая ёмкость уединённого проводника и конденсатора.doc 13. /билетыфизика 2сем/к10омуПроводники в электростатическом поле.doc 14. /билетыфизика 2сем/к13омуЭнергия заряженного проводника, конденсатора, сист. проводников и зарядов. Энергия электрос.doc 15. /билетыфизика 2сем/к16омуМагнитное поле Вектор магнитной индукции Сила Лоренца Закон Ампера.doc 16. /билетыфизика 2сем/к17омуЗакон Био-Савара-Лапласа. Примеры расчета простейших полей тока..doc 17. /билетыфизика 2сем/к1омуЗакон Кулона Закон сохранения электрического заряда.doc 18. /билетыфизика 2сем/к1омуНапряжённость электрического поля.doc 19. /билетыфизика 2сем/к1омуПринцип суперпозиции полей Поле электрического диполя.doc 20. /билетыфизика 2сем/к20омуЗакон полного тока для магнитного поля в вакууме.doc 21. /билетыфизика 2сем/к2омуТеорема О-Гаусса для поля в веществе Вектор электрического смещения .doc 22. /билетыфизика 2сем/к4омуПотенциал электростатического поля.doc 23. /билетыфизика 2сем/к4омуРабота сил электростатического поля.doc 24. /билетыфизика 2сем/к6омуПоляризация диэлектрика Вектор поляризованности.doc 25. /билетыфизика 2сем/к8омуУсловия для электростатического поля на границе раздела сред.doc 26. /билетыфизика 2сем/с1по10билеты.doc | Электрическая емкость уединенного проводника Закон сохранения энергии поля Закон Ампера. Контур с током. Магнитный момент в витке с током Закон Био-Савара-Лапласа. Применение закона и расчеты магнитной индукции прямолинейного проводника V, в и Fm, для положительного и отрицательного зарядов частицы. Модуль силы равен Fm= 1. Магнитным потоком (потоком вектора в маг—твои вщукцп) Закон Фарадея-Максвела. Вывод этого уравнения из закона сохранения энергии. Закон Ленца Зарядов и, =>, само поле центрально-симметричны относительно центра Пример №1: поле заряда, равномерно распределенного с объемной плотностью р по объему кругового цилиндра, радиус Закон Ома для плотности тока. Обобщенный закон Ома для участка цепи: плотность тока проводимости равна произведению удельной электрической проводимости проводника на напряжённость электрического поля в проводнике R между ними. Именно поэтому напряженность Еi поля точечного заряда qi, также обратно пропорциональна квадрату расстояния r Электрическая ёмкость уединённого проводника и конденсатора: уединенным проводником Проводники в электростатическом поле: в металлических проводниках имеются свободные электроны, которые могут под действием электрического поля перемещаться по всему проводнику Электрическая энергия заряженного уединенного проводника: W М всегда перпендикулярна вектору скорости Закон Био-Савара-Лапласа. Примеры расчета простейших полей тока: при наложении магнитных полей справедлив принцип суперпозиции, т е. принцип независимого действия полей: B= ( l ) Закон сохранения электрического заряда. Закон Кулона: закон сохранения электрического заряда: алгебраическая сумма электрических зарядов тел или частиц, образующих электрически изолированную систему, Апряжённость электрического поля: векторная величина е Принцип суперпозиции полей. Поле диполя: (принцип независимости действия электрических полей) Закон полного тока для магнитного поля в вакууме Согласно этой теореме, поток Потенциал электростатического поля: Из формул W ) в точку 2 (потенциал Состоящая в том, что в любом макроскопически малом его объеме Условия для электростатического поля на границе раздела сред: первое условие для напряженности поля: E Закон сохранения эл заряда. Электрический заряд замкнутой системы сохраняется. Иными словами, алгебраическая сумма зарядов всех тел в системе не меняется со временем
|
скачать doc Закон сохранения электрического заряда. Закон Кулона: закон сохранения электрического заряда:
алгебраическая сумма электрических зарядов тел или частиц, образующих электрически изолированную систему, не изменяется при любых процессах, происходящих в этой системе. В системе могут образовываться новые электрически заряженные частицы, например электроны вследствие ионизации атомов и молекул, ионы за счёт явления ионизации или электролитической диссоциации и др. Однако при этом одновременно рождаются частицы, заряды которых противоположны по знаку и в сумме =0. Например, при ионизации атома образуется пара частиц – свободный электрон и однозарядный положительный ион. Закон Кулона:
Сила электростатического взаимодействия двух точечных электрических зарядов, находящихся в вакууме, прямо пропорциональна произведению этих зарядов, обратно пропорциональна квадрату расстояния между зарядами и направлена вдоль соединяющей их прямой:З

десь F
12 – сила, действующая на заряд q
1 со стороны заряда q
2; r
12 – радиус-вектор, соединяющий заряд q
2 с зарядом q
1; r=|r
12| (рис.1 и 2); k –коэффициент пропорциональности (k>0); F
12 – сила, действующая на заряд q
2 стороны заряда q
1;
r
12=r
12 – радиус-вектор, соединяющий заряд q
1 с зарядом (на рис.2 показан штрихами). Коэффициент пропорциональности k в законе Кулона (рис.2) зависит от выбора системы единиц. В СИ принимается, что коэффициент k – величина размерная и равная k=1/(4
0), где
0 – новый коэффициент пропорцио

–нальности, подлежащий определению из экспериментальных данных и наз-й
электрической постоянной, а множитель 4 при
0 введен для записи закона Кулона в рационализованной форме: F
21=(1q
1q
2/4
0r
3)r
21; где
0=8,8510
-12 Кл
2/(Нм
2); k=1/(4
0)=910
9 Нм
2/Кл
2. При построении системы единиц СГС (гауссовой) для электродинамических величин полагают коэффициент k в законе Кулона (рис.1) безразмерным и равным единице: k=1. Соответственно закон Кулона записывают в форме F
21=(q
1q
2/r
3)r
21.
Всякое заряженное тело можно рассматривать как совокупность точечных зарядов аналогично тому, как в механике всякое тело можно считать совокупностью материальных точек. Поэтому электростатическая сила, с которой одно заряженное тело действует на другое, равна геометрической сумме сил, приложенных ко всем точечным зарядам второго тела со стороны каждого точечного заряда первого тела.
Линейная плотность электрических зарядов: =dq/dt, где dq – заряд малого участка заряженной линии длиной d
l.
Поверхностная плоскость электрических зарядов: =dq/dS, где dq – заряд малого участка заряженной поверхности площадью dS.
Объёмная плотность электрических зарядов: =dq/dV, где dq – заряд малого участка заряженного тела объёмом dV.