1. /билетыфизика 2сем/11.doc 2. /билетыфизика 2сем/13..doc 3. /билетыфизика 2сем/16..doc 4. /билетыфизика 2сем/17..doc 5. /билетыфизика 2сем/18..doc 6. /билетыфизика 2сем/21..doc 7. /билетыфизика 2сем/22.doc 8. /билетыфизика 2сем/5 Примеры расчёта полей.doc 9. /билетыфизика 2сем/5а Примеры расчёта полей.doc 10. /билетыфизика 2сем/Закон Ома для плотности тока. Обобщенный закон Ома для участка цепи..doc 11. /билетыфизика 2сем/Теорема О-Гаусса для электростатического поля в вакууме..doc 12. /билетыфизика 2сем/Электрическая ёмкость уединённого проводника и конденсатора.doc 13. /билетыфизика 2сем/к10омуПроводники в электростатическом поле.doc 14. /билетыфизика 2сем/к13омуЭнергия заряженного проводника, конденсатора, сист. проводников и зарядов. Энергия электрос.doc 15. /билетыфизика 2сем/к16омуМагнитное поле Вектор магнитной индукции Сила Лоренца Закон Ампера.doc 16. /билетыфизика 2сем/к17омуЗакон Био-Савара-Лапласа. Примеры расчета простейших полей тока..doc 17. /билетыфизика 2сем/к1омуЗакон Кулона Закон сохранения электрического заряда.doc 18. /билетыфизика 2сем/к1омуНапряжённость электрического поля.doc 19. /билетыфизика 2сем/к1омуПринцип суперпозиции полей Поле электрического диполя.doc 20. /билетыфизика 2сем/к20омуЗакон полного тока для магнитного поля в вакууме.doc 21. /билетыфизика 2сем/к2омуТеорема О-Гаусса для поля в веществе Вектор электрического смещения .doc 22. /билетыфизика 2сем/к4омуПотенциал электростатического поля.doc 23. /билетыфизика 2сем/к4омуРабота сил электростатического поля.doc 24. /билетыфизика 2сем/к6омуПоляризация диэлектрика Вектор поляризованности.doc 25. /билетыфизика 2сем/к8омуУсловия для электростатического поля на границе раздела сред.doc 26. /билетыфизика 2сем/с1по10билеты.doc | Электрическая емкость уединенного проводника Закон сохранения энергии поля Закон Ампера. Контур с током. Магнитный момент в витке с током Закон Био-Савара-Лапласа. Применение закона и расчеты магнитной индукции прямолинейного проводника V, в и Fm, для положительного и отрицательного зарядов частицы. Модуль силы равен Fm= 1. Магнитным потоком (потоком вектора в маг—твои вщукцп) Закон Фарадея-Максвела. Вывод этого уравнения из закона сохранения энергии. Закон Ленца Зарядов и, =>, само поле центрально-симметричны относительно центра Пример №1: поле заряда, равномерно распределенного с объемной плотностью р по объему кругового цилиндра, радиус Закон Ома для плотности тока. Обобщенный закон Ома для участка цепи: плотность тока проводимости равна произведению удельной электрической проводимости проводника на напряжённость электрического поля в проводнике R между ними. Именно поэтому напряженность Еi поля точечного заряда qi, также обратно пропорциональна квадрату расстояния r Электрическая ёмкость уединённого проводника и конденсатора: уединенным проводником Проводники в электростатическом поле: в металлических проводниках имеются свободные электроны, которые могут под действием электрического поля перемещаться по всему проводнику Электрическая энергия заряженного уединенного проводника: W М всегда перпендикулярна вектору скорости Закон Био-Савара-Лапласа. Примеры расчета простейших полей тока: при наложении магнитных полей справедлив принцип суперпозиции, т е. принцип независимого действия полей: B= ( l ) Закон сохранения электрического заряда. Закон Кулона: закон сохранения электрического заряда: алгебраическая сумма электрических зарядов тел или частиц, образующих электрически изолированную систему, Апряжённость электрического поля: векторная величина е Принцип суперпозиции полей. Поле диполя: (принцип независимости действия электрических полей) Закон полного тока для магнитного поля в вакууме Согласно этой теореме, поток Потенциал электростатического поля: Из формул W ) в точку 2 (потенциал Состоящая в том, что в любом макроскопически малом его объеме Условия для электростатического поля на границе раздела сред: первое условие для напряженности поля: E Закон сохранения эл заряда. Электрический заряд замкнутой системы сохраняется. Иными словами, алгебраическая сумма зарядов всех тел в системе не меняется со временем
|
скачать doc Работа сил электростатического поля. Связь потенциала с напряжённостью поля: Работа, совершаемая силами электростатического поля при перемещении точечного заряда q из точки 1 поля (потенциал
1) в точку 2 (потенциал
2), равна A
1–2=q(
1–
2). В частности, если
1=A
1–2/q. =>, потенциал
в какой-либо точке электростатического поля численно равен
работе, совершаемой силами поля при перемещении единичного положительного заряда из этой точки поля в ту точку, где потенциал поля принят равным нулю. Выбор точки с нулевым потенциалом произволен. Сила, действующая со стороны электростатического поля на внесенный в него пробный точечный электрический заряд q, и потенциальная энергия этого заряда в поле равны
F=qE, W
п=q. С другой стороны, между потенциальной силой и потенциальной энергией существует связь: F=–grad W
п.
Т. к. заряд q не зависит от координат точек поля, то grad (q)=q grad . Поэтому между силовой характеристикой электростатического поля, напряжённостью E, и его энергетической характеристикой, потенциалом , существует следующая связь: E=–grad . В каждой точке поля проекции вектора на оси декартовой системы координат связаны с частными производными от потенциала по этим координатам соотношениями E
x=–/x, E
y=–/y, E
z=–/z. Элементарная работа сил электростатического поля на малом перемещении dr пробного заряда q: A=qEdr=qEd
l cos (E,dr)=qE
ld
l, где d
l=|dr|, E
l – проекция вектора E на направление перемещения dr. С другой стороны, A=–dW
п=–q d. Поэтому E
l d
l=–d или E
l =–d/d
l, т. е. проекция вектора напряжённости электростатического поля на произвольное направление численно = быстроте убывания потенциала поля на единицу длины в этом направлении. Вдоль линии напряжённости E
l и |d/d
l| достигают максимального значения, равного |E|.