1. /билетыфизика 2сем/11.doc 2. /билетыфизика 2сем/13..doc 3. /билетыфизика 2сем/16..doc 4. /билетыфизика 2сем/17..doc 5. /билетыфизика 2сем/18..doc 6. /билетыфизика 2сем/21..doc 7. /билетыфизика 2сем/22.doc 8. /билетыфизика 2сем/5 Примеры расчёта полей.doc 9. /билетыфизика 2сем/5а Примеры расчёта полей.doc 10. /билетыфизика 2сем/Закон Ома для плотности тока. Обобщенный закон Ома для участка цепи..doc 11. /билетыфизика 2сем/Теорема О-Гаусса для электростатического поля в вакууме..doc 12. /билетыфизика 2сем/Электрическая ёмкость уединённого проводника и конденсатора.doc 13. /билетыфизика 2сем/к10омуПроводники в электростатическом поле.doc 14. /билетыфизика 2сем/к13омуЭнергия заряженного проводника, конденсатора, сист. проводников и зарядов. Энергия электрос.doc 15. /билетыфизика 2сем/к16омуМагнитное поле Вектор магнитной индукции Сила Лоренца Закон Ампера.doc 16. /билетыфизика 2сем/к17омуЗакон Био-Савара-Лапласа. Примеры расчета простейших полей тока..doc 17. /билетыфизика 2сем/к1омуЗакон Кулона Закон сохранения электрического заряда.doc 18. /билетыфизика 2сем/к1омуНапряжённость электрического поля.doc 19. /билетыфизика 2сем/к1омуПринцип суперпозиции полей Поле электрического диполя.doc 20. /билетыфизика 2сем/к20омуЗакон полного тока для магнитного поля в вакууме.doc 21. /билетыфизика 2сем/к2омуТеорема О-Гаусса для поля в веществе Вектор электрического смещения .doc 22. /билетыфизика 2сем/к4омуПотенциал электростатического поля.doc 23. /билетыфизика 2сем/к4омуРабота сил электростатического поля.doc 24. /билетыфизика 2сем/к6омуПоляризация диэлектрика Вектор поляризованности.doc 25. /билетыфизика 2сем/к8омуУсловия для электростатического поля на границе раздела сред.doc 26. /билетыфизика 2сем/с1по10билеты.doc | Электрическая емкость уединенного проводника Закон сохранения энергии поля Закон Ампера. Контур с током. Магнитный момент в витке с током Закон Био-Савара-Лапласа. Применение закона и расчеты магнитной индукции прямолинейного проводника V, в и Fm, для положительного и отрицательного зарядов частицы. Модуль силы равен Fm= 1. Магнитным потоком (потоком вектора в маг—твои вщукцп) Закон Фарадея-Максвела. Вывод этого уравнения из закона сохранения энергии. Закон Ленца Зарядов и, =>, само поле центрально-симметричны относительно центра Пример №1: поле заряда, равномерно распределенного с объемной плотностью р по объему кругового цилиндра, радиус Закон Ома для плотности тока. Обобщенный закон Ома для участка цепи: плотность тока проводимости равна произведению удельной электрической проводимости проводника на напряжённость электрического поля в проводнике R между ними. Именно поэтому напряженность Еi поля точечного заряда qi, также обратно пропорциональна квадрату расстояния r Электрическая ёмкость уединённого проводника и конденсатора: уединенным проводником Проводники в электростатическом поле: в металлических проводниках имеются свободные электроны, которые могут под действием электрического поля перемещаться по всему проводнику Электрическая энергия заряженного уединенного проводника: W М всегда перпендикулярна вектору скорости Закон Био-Савара-Лапласа. Примеры расчета простейших полей тока: при наложении магнитных полей справедлив принцип суперпозиции, т е. принцип независимого действия полей: B= ( l ) Закон сохранения электрического заряда. Закон Кулона: закон сохранения электрического заряда: алгебраическая сумма электрических зарядов тел или частиц, образующих электрически изолированную систему, Апряжённость электрического поля: векторная величина е Принцип суперпозиции полей. Поле диполя: (принцип независимости действия электрических полей) Закон полного тока для магнитного поля в вакууме Согласно этой теореме, поток Потенциал электростатического поля: Из формул W ) в точку 2 (потенциал Состоящая в том, что в любом макроскопически малом его объеме Условия для электростатического поля на границе раздела сред: первое условие для напряженности поля: E Закон сохранения эл заряда. Электрический заряд замкнутой системы сохраняется. Иными словами, алгебраическая сумма зарядов всех тел в системе не меняется со временем
|
скачать doc 17.Действие магнитного поля на движущийся заряд. Сила Лоренца. Движение заряженных частиц в магнитном поле. Принцип действия циклических ускорителей.
На рис. 21.6 показаны взаимные расположения векторов
v, В и Fm, для положительного и отрицательного зарядов частицы. Модуль силы равен
Fm=|q|vBsina, (21.3]
где а — угол между векторами v и В.
Сила
fm направлена перпендикулярно скорости v заряженной частицы и сообщает частице только нормальное ускорение,
Иными словами, сила Fm не совершает работы и вызывает лишь искривление траектории частицы. Поэтому при движении свободной заряженной частицы в магнитном поле ее кинетическая энергия не изменяется.
5. Если на движущуюся частицу с электрическим зарядом
q одновременно действуют и магнитное, и электрическое поля, то результирующая сила
F, называемая силой
Лоренца, равна сумме двух составляющих — электрической и магнитной:
F=qE+q[vB], (21.4)
где Е — напряженность электрического поля. Иногда под силой Лоренца понимают только магнитную составляющую силы F.
Р

азделение силы Лоренца F на электрическую и магнитную составляющие относительно, т. е. эти составляющие зависят от выбора инерциальной системы отсчета. Дело в том, что при переходе от одной инерциальной системы отсчета к другой изменяются не только скорость v заряженной частицы, но также и силовые характеристики Е и В полей. Соответственно разделение электромагнитного поля на электрическое и магнитное поля тоже относительно.
1. Опыты показывают, что сила Рm действующая со стороны магнитного поля на движущуюся в этом поле заряженную частицу, подчиняется следующим закономерностям:
а) сила
Fm всегда перпендикулярна вектору скорости v частицы;
б) отношение
Fm/(|q|v) не зависит ни от заряда
q частицы, ни от модуля ее скорости;
в) при изменении направления скорости частицы в точке
А поля модуль силы
Fm изменяется от 0 до максимального значения (Fm)макс которое зависит не только от |
q|v, но также от значения в точке А силовой характеристики магнитного поля - вектора
В, называемого
магнитной индукцией поля.