NetNado
  Найти на сайте:

Учащимся

Учителям



1. /Клетеник - Сборник задач по аналитической геометрии/kletenik_01.doc
2. /Клетеник - Сборник задач по аналитической геометрии/kletenik_02.doc
3. /Клетеник - Сборник задач по аналитической геометрии/kletenik_03.doc
4. /Клетеник - Сборник задач по аналитической геометрии/kletenik_04.doc
5. /Клетеник - Сборник задач по аналитической геометрии/kletenik_05.doc
6. /Клетеник - Сборник задач по аналитической геометрии/kletenik_06.doc
7. /Клетеник - Сборник задач по аналитической геометрии/kletenik_07.doc
8. /Клетеник - Сборник задач по аналитической геометрии/kletenik_08.doc
9. /Клетеник - Сборник задач по аналитической геометрии/kletenik_09.doc
10. /Клетеник - Сборник задач по аналитической геометрии/kletenik_10.doc
11. /Клетеник - Сборник задач по аналитической геометрии/kletenik_11.doc
12. /Клетеник - Сборник задач по аналитической геометрии/kletenik_12.doc
13. /Клетеник - Сборник задач по аналитической геометрии/kletenik_13.doc
14. /Клетеник - Сборник задач по аналитической геометрии/kletenik_14.doc
15. /Клетеник - Сборник задач по аналитической геометрии/kletenik_15.doc
16. /Клетеник - Сборник задач по аналитической геометрии/kletenik_16.doc
17. /Клетеник - Сборник задач по аналитической геометрии/kletenik_17.doc
18. /Клетеник - Сборник задач по аналитической геометрии/kletenik_18.doc
19. /Клетеник - Сборник задач по аналитической геометрии/kletenik_19.doc
20. /Клетеник - Сборник задач по аналитической геометрии/kletenik_20.doc
21. /Клетеник - Сборник задач по аналитической геометрии/kletenik_21.doc
22. /Клетеник - Сборник задач по аналитической геометрии/kletenik_22.doc
23. /Клетеник - Сборник задач по аналитической геометрии/kletenik_23.doc
24. /Клетеник - Сборник задач по аналитической геометрии/kletenik_24.doc
25. /Клетеник - Сборник задач по аналитической геометрии/kletenik_25.doc
26. /Клетеник - Сборник задач по аналитической геометрии/kletenik_26.doc
27. /Клетеник - Сборник задач по аналитической геометрии/kletenik_27.doc
28. /Клетеник - Сборник задач по аналитической геометрии/kletenik_28.doc
29. /Клетеник - Сборник задач по аналитической геометрии/kletenik_29.doc
30. /Клетеник - Сборник задач по аналитической геометрии/kletenik_30.doc
31. /Клетеник - Сборник задач по аналитической геометрии/kletenik_31.doc
32. /Клетеник - Сборник задач по аналитической геометрии/kletenik_32.doc
33. /Клетеник - Сборник задач по аналитической геометрии/kletenik_33.doc
34. /Клетеник - Сборник задач по аналитической геометрии/kletenik_34.doc
35. /Клетеник - Сборник задач по аналитической геометрии/kletenik_35.doc
36. /Клетеник - Сборник задач по аналитической геометрии/kletenik_36.doc
37. /Клетеник - Сборник задач по аналитической геометрии/kletenik_37.doc
38. /Клетеник - Сборник задач по аналитической геометрии/kletenik_38.doc
39. /Клетеник - Сборник задач по аналитической геометрии/kletenik_39.doc
40. /Клетеник - Сборник задач по аналитической геометрии/kletenik_40.doc
41. /Клетеник - Сборник задач по аналитической геометрии/kletenik_41.doc
42. /Клетеник - Сборник задач по аналитической геометрии/kletenik_42.doc
43. /Клетеник - Сборник задач по аналитической геометрии/kletenik_43.doc
44. /Клетеник - Сборник задач по аналитической геометрии/kletenik_44.doc
45. /Клетеник - Сборник задач по аналитической геометрии/kletenik_45.doc
46. /Клетеник - Сборник задач по аналитической геометрии/kletenik_46.doc
47. /Клетеник - Сборник задач по аналитической геометрии/kletenik_o1.doc
48. /Клетеник - Сборник задач по аналитической геометрии/kletenik_o2.doc
49. /Клетеник - Сборник задач по аналитической геометрии/kletenik_o3.doc
50. /Клетеник - Сборник задач по аналитической геометрии/kletenik_o4.doc
51. /Клетеник - Сборник задач по аналитической геометрии/kletenik_o5.doc
52. /Клетеник - Сборник задач по аналитической геометрии/kletenik_o6.doc
53. /Клетеник - Сборник задач по аналитической геометрии/kletenik_o7.doc
54. /Клетеник - Сборник задач по аналитической геометрии/kletenik_o8.doc
55. /Клетеник - Сборник задач по аналитической геометрии/kletenik_o9.doc
56. /Клетеник - Сборник задач по аналитической геометрии/kletenik_op.doc
57. /Клетеник - Сборник задач по аналитической геометрии/kletenik_p1.doc
58. /Клетеник - Сборник задач по аналитической геометрии/kletenik_p2.doc
59. /Клетеник - Сборник задач по аналитической геометрии/kletenik_p3.doc
60. /Клетеник - Сборник задач по аналитической геометрии/kletenik_p4.doc
61. /Клетеник - Сборник задач по аналитической геометрии/kletenik_p5.doc
62. /Клетеник - Сборник задач по аналитической геометрии/kletenik_p6.doc
63. /Клетеник - Сборник задач по аналитической геометрии/kletenik_pr1.doc
64. /Клетеник - Сборник задач по аналитической геометрии/kletenik_pr2.doc
§ Ось и отрезки оси. Координаты на прямой
Координат определяется заданием линейной единицы для измерения длин и двух взаимно перпендикулярных осей, занумерованных в каком-нибудь порядке
§ Полярные координаты
§ Направленный отрезок. Проекция отрезка на произвольную ось. Проекции отрезка на оси координат. Длина и полярный угол отрезка. Расстояние между двумя точками
§ Деление отрезка в данном отношении
§ Площадь треугольника
§ Преобразование координат
§ Функция двух переменных
§ Понятие уравнения линии. Задание линии при помощи уравнения
§ 12. Общее уравнение прямой. Уравнение прямой с угловым коэффициентом. Угол между двумя прямыми. Условие параллельности и перпендикулярности двух прямых
Исследование уравнений двух и трёх прямых. Уравнение прямой «в отрезках»
Задача определения расстояния от точки до прямой
§ 15. Уравнение пучка прямых
§ 16. Полярное уравнение прямой
§ 17. Окружность
Где b =; очевидно, a  b
Фокусы гиперболы обозначают буквами
Расстояние от фокуса до директрисы буквой
§ 21. Полярное уравнение эллипса, гиперболы и параболы
§ 22. Диаметры линий второго порядка
§ 23. Центр линии второго порядка
§ 24. Приведение к простейшему виду уравнения центральной линии второго порядка
§ 25. Приведение к простейшему виду параболического уравнения
§ 26. Уравнения некоторых кривых, встречающихся в математике и её приложениях 701
§ 27. Декартовы прямоугольные координаты в пространстве
§ 28. Расстояние между двумя точками. Деление отрезка в данном отношении
§ 29. Понятие вектора. Проекции вектора
§ 30. Линейные операции над векторами Суммой а + b двух векторов а
А, b обозначается символом аb
§ 32. Векторное произведение векторов
§ 33. Смешанное произведение трёх векторов
§ 34. Двойное векторное произведение Пусть вектор а умножается векторно на вектор b
Задача о пересечении трёх поверхностей
§ 37. Уравнение цилиндрической поверхности с образующими, параллельными одной из координатных осей
§ 38. Общее уравнение плоскости. Уравнение плоскости, проходящей через данную точку и имеющей данный нормальный вектор
§ 39. Неполные уравнения плоскостей. Уравнение плоскости «в отрезках»
40. Нормальное уравнение плоскости. Расстояние от точки до плоскости
§ 41. Уравнения прямой
Если известна одна точка
§ 43. Смешанные задачи, относящиеся к уравнению плоскости и уравнениям прямой 1038
§ 44. Сфера
Решение*). Пусть м ( r
§ 46. Поверхности второго порядка
Ответы (Глава 1) См черт. 54. 2
) 146. f ( x, у) =2ах-а 147. 1) f ( x; у) = 2ах; 2) f
210. Точки Черт. 76. Черт. 77. M 1
Ответы (Глава 4)
665. Линии 1, 2, 5 и 8 имеют единственный центр; 3, 7 — не имеют центра; 4, 6 — имеют бесконечно много центров. 666
) 720. 1) (4; 3; 0), (-3; 2; 0), точка с лежит на плоскости о X
Ответы (Глава 7) 748
885. Точки m 1, m 2, m 4, лежат на поверхности, точки М
Ответы (Глава 9) 913.. 914. 915. 916
§ Определители второго порядка и система двух уравнений первой степени с двумя неизвестными
§ Однородная система двух уравнений первой степени с тремя неизвестными
§ Определители третьего порядка
§ Свойства определителей
Решение и исследование системы трёх уравнений первой степени с тремя неизвестными Рассмотрим систему уравнений (1) с неизвестными х, у, z (коэффициенты a t, b
Предисловие ко второму изданию
Предисловие к первому изданию

скачать doc

§ 1. Ось и отрезки оси. Координаты на прямой
Прямая, на которой выбрано положительное направление, называется осью. Отрезок оси, ограниченный какими-нибудь точками А и В, называется направленным, если сказано, какая из этих точек считается началом отрезка, какая — концом. Направленный отрезок с началом А и концом В обозна­чается символом АВ. Величиной направленного отрезка оси называется его длина, взятая со знаком плюс, если направление отрезка (т. е. направление от начала к концу) совпадает с положительным направлением оси, и со зна­ком минус, если это направление противоположно положительному напра­влению оси. Величина отрезка АВ обозначается символом АВ, его длина — символом АВ. Если точки А и В совпадают, то определяемый ими отрезок называется нулевым; очевидно, в этом случае АВ = ВА = 0 (направление нулевого отрезка следует считать неопределённым).

Пусть дана произвольная прямая а. Выберем некоторый отрезок в ка­честве единицы измерения длин, назначим на прямой а положительное на­правление (после чего она становится осью) и отметим на этой прямой буквой О какую-нибудь точку. Тем самым на прямой а будет введена си­стема координат.

Координатой любой точки М прямой а (в установленной системе коор­динат) называется число х, равное величине отрезка ОМ:
х = ОМ.

Точка О называется началом координат; её собственная координата равна нулю. В дальнейшем символ М (х) означает, что точка М имеет коорди­нату х.

Если M1 (x1) и М2(x2) — две произвольные точки прямой а, то фор­мула

M1 M2= x2 – x1

выражает величину отрезка формула M1 M2 выражает его длину.
|M1M2 | = | x2 – x1 |
1. Построить точки:

А(3), B(5), С(1), D(), E(), F() и H().

2. Построить точки, координаты которых удовлетворяют урав­нениям

1) |x| = 2; 2) |x—1| = 3; 3) |1— x|=2; 4) | 2+x| = 2.

3. Охарактеризовать геометрически расположение точек, коор­динаты которых удовлетворяют неравенствам:

1) |x| >2; 2) х — 30; 3) 12— x<0; 4) 2x—30;

5) 3x5>0; 6) 1<x<3; 7) — 2x3; 8) >0;

9) >1; 10) <0; 11) <1;

12) x2 — 8x+150; 13) x2 — 8x+15>0;

14) x2 + x—12>0; 15) x2+x— 120.

4. Определить величину АВ и длину | АВ | отрезка, заданного точками: 1) А(3) и В(11); 2) А (5) и В (2); 3) А (—1) и В (3); 4) А (—5) и В (—3);

5) А (— 1) и В (—3); 6) А (— 7) и В (—5).

5. Вычислить координату точки Л, если известны:

1) В (3) и АВ = 5; 2) В (2) и АВ = — 3; 3) В (—1) и ВА = 2;

4) В (—5) и ВА = —3; 5) В(0) и |АВ| = 2; 6) В (2) и | АВ | = 3;

7) В(— 1) и | АВ |==5; 8) В(—5) и | АВ| = 2.

6. Охарактеризовать геометрически расположение точек, коор­динаты которых удовлетворяют следующим неравенствам:

1) |x|<1; 2) |x|>2; 3) |x| 2; 4) |x|3; 5) х — 2|<3;

6) |x — 5|l; 7) х— 1|2; 8) |x—3=1; 9) |x+1|<3;

10) |x+2|>1; 11) x+5|l; 12) |x+1|2.

7. Определить отношение , в котором точка С делит

отрезок АВ при следующих данных:

1) А(2); В(6) и С(4); 2) А (2), В (4) и С(7);

3) А (—1), В (5) и С(3); 4) А (1), В (13) и С(5);

5) А (5), В (—2) и С(—5).

8. Даны три точки А (—7), В (—1) и С(1). Определить отно­шение , в котором каждая из них делит отрезок, ограниченный двумя другими.

9. Определить отношение , в котором данная точка

М(х) делит отрезок M1M2 ограниченный данными точками М1(х1) и М2(х2).

10. Определить координату х точки М, делящей отрезок M1M2, ограниченный данными точками M1(x1) и М2(х2) в данном отношении

11. Определить координату х середины отрезка, ограниченного двумя данными точками M1(x1) и М2(х2) .

12. Определить координату х середины отрезка, ограниченного двумя данными точками, в каждом из следующих случаев:

1) А(3) и В(5); 2) С(— 1) и D(5); 3) M1(— 1) и M2(—3);

4) Р1(—5) и Р1 (1); 5) Q1(3) и Q2(—4).

13. Определить координату точки М, если известны:

1) M1(3), М2(7) и ;

2) A(2), B(—5) и ;

3) С(—1), D(3) и ;

4) A(—1), B(3) и ;

5) A(1), B(—3) и ;

6) A(—2), B(—1) и .

14. Даны две точки: A (5) и B (—3). Определить:

1) координату точки М, симметричной точке A относительно точки B;

2) координату точки N, симметричной точке B относительно точки A.

15. Отрезок, ограниченный точками A (—2) и 5(19), разделён на три равные части. Определить координаты точек деления.

16. Определить координаты концов A и B отрезка, который точками Р(—25) и Q(—9) разделён на три равные части.