NetNado
  Найти на сайте:

Учащимся

Учителям



1. /Клетеник - Сборник задач по аналитической геометрии/kletenik_01.doc
2. /Клетеник - Сборник задач по аналитической геометрии/kletenik_02.doc
3. /Клетеник - Сборник задач по аналитической геометрии/kletenik_03.doc
4. /Клетеник - Сборник задач по аналитической геометрии/kletenik_04.doc
5. /Клетеник - Сборник задач по аналитической геометрии/kletenik_05.doc
6. /Клетеник - Сборник задач по аналитической геометрии/kletenik_06.doc
7. /Клетеник - Сборник задач по аналитической геометрии/kletenik_07.doc
8. /Клетеник - Сборник задач по аналитической геометрии/kletenik_08.doc
9. /Клетеник - Сборник задач по аналитической геометрии/kletenik_09.doc
10. /Клетеник - Сборник задач по аналитической геометрии/kletenik_10.doc
11. /Клетеник - Сборник задач по аналитической геометрии/kletenik_11.doc
12. /Клетеник - Сборник задач по аналитической геометрии/kletenik_12.doc
13. /Клетеник - Сборник задач по аналитической геометрии/kletenik_13.doc
14. /Клетеник - Сборник задач по аналитической геометрии/kletenik_14.doc
15. /Клетеник - Сборник задач по аналитической геометрии/kletenik_15.doc
16. /Клетеник - Сборник задач по аналитической геометрии/kletenik_16.doc
17. /Клетеник - Сборник задач по аналитической геометрии/kletenik_17.doc
18. /Клетеник - Сборник задач по аналитической геометрии/kletenik_18.doc
19. /Клетеник - Сборник задач по аналитической геометрии/kletenik_19.doc
20. /Клетеник - Сборник задач по аналитической геометрии/kletenik_20.doc
21. /Клетеник - Сборник задач по аналитической геометрии/kletenik_21.doc
22. /Клетеник - Сборник задач по аналитической геометрии/kletenik_22.doc
23. /Клетеник - Сборник задач по аналитической геометрии/kletenik_23.doc
24. /Клетеник - Сборник задач по аналитической геометрии/kletenik_24.doc
25. /Клетеник - Сборник задач по аналитической геометрии/kletenik_25.doc
26. /Клетеник - Сборник задач по аналитической геометрии/kletenik_26.doc
27. /Клетеник - Сборник задач по аналитической геометрии/kletenik_27.doc
28. /Клетеник - Сборник задач по аналитической геометрии/kletenik_28.doc
29. /Клетеник - Сборник задач по аналитической геометрии/kletenik_29.doc
30. /Клетеник - Сборник задач по аналитической геометрии/kletenik_30.doc
31. /Клетеник - Сборник задач по аналитической геометрии/kletenik_31.doc
32. /Клетеник - Сборник задач по аналитической геометрии/kletenik_32.doc
33. /Клетеник - Сборник задач по аналитической геометрии/kletenik_33.doc
34. /Клетеник - Сборник задач по аналитической геометрии/kletenik_34.doc
35. /Клетеник - Сборник задач по аналитической геометрии/kletenik_35.doc
36. /Клетеник - Сборник задач по аналитической геометрии/kletenik_36.doc
37. /Клетеник - Сборник задач по аналитической геометрии/kletenik_37.doc
38. /Клетеник - Сборник задач по аналитической геометрии/kletenik_38.doc
39. /Клетеник - Сборник задач по аналитической геометрии/kletenik_39.doc
40. /Клетеник - Сборник задач по аналитической геометрии/kletenik_40.doc
41. /Клетеник - Сборник задач по аналитической геометрии/kletenik_41.doc
42. /Клетеник - Сборник задач по аналитической геометрии/kletenik_42.doc
43. /Клетеник - Сборник задач по аналитической геометрии/kletenik_43.doc
44. /Клетеник - Сборник задач по аналитической геометрии/kletenik_44.doc
45. /Клетеник - Сборник задач по аналитической геометрии/kletenik_45.doc
46. /Клетеник - Сборник задач по аналитической геометрии/kletenik_46.doc
47. /Клетеник - Сборник задач по аналитической геометрии/kletenik_o1.doc
48. /Клетеник - Сборник задач по аналитической геометрии/kletenik_o2.doc
49. /Клетеник - Сборник задач по аналитической геометрии/kletenik_o3.doc
50. /Клетеник - Сборник задач по аналитической геометрии/kletenik_o4.doc
51. /Клетеник - Сборник задач по аналитической геометрии/kletenik_o5.doc
52. /Клетеник - Сборник задач по аналитической геометрии/kletenik_o6.doc
53. /Клетеник - Сборник задач по аналитической геометрии/kletenik_o7.doc
54. /Клетеник - Сборник задач по аналитической геометрии/kletenik_o8.doc
55. /Клетеник - Сборник задач по аналитической геометрии/kletenik_o9.doc
56. /Клетеник - Сборник задач по аналитической геометрии/kletenik_op.doc
57. /Клетеник - Сборник задач по аналитической геометрии/kletenik_p1.doc
58. /Клетеник - Сборник задач по аналитической геометрии/kletenik_p2.doc
59. /Клетеник - Сборник задач по аналитической геометрии/kletenik_p3.doc
60. /Клетеник - Сборник задач по аналитической геометрии/kletenik_p4.doc
61. /Клетеник - Сборник задач по аналитической геометрии/kletenik_p5.doc
62. /Клетеник - Сборник задач по аналитической геометрии/kletenik_p6.doc
63. /Клетеник - Сборник задач по аналитической геометрии/kletenik_pr1.doc
64. /Клетеник - Сборник задач по аналитической геометрии/kletenik_pr2.doc
§ Ось и отрезки оси. Координаты на прямой
Координат определяется заданием линейной единицы для измерения длин и двух взаимно перпендикулярных осей, занумерованных в каком-нибудь порядке
§ Полярные координаты
§ Направленный отрезок. Проекция отрезка на произвольную ось. Проекции отрезка на оси координат. Длина и полярный угол отрезка. Расстояние между двумя точками
§ Деление отрезка в данном отношении
§ Площадь треугольника
§ Преобразование координат
§ Функция двух переменных
§ Понятие уравнения линии. Задание линии при помощи уравнения
§ 12. Общее уравнение прямой. Уравнение прямой с угловым коэффициентом. Угол между двумя прямыми. Условие параллельности и перпендикулярности двух прямых
Исследование уравнений двух и трёх прямых. Уравнение прямой «в отрезках»
Задача определения расстояния от точки до прямой
§ 15. Уравнение пучка прямых
§ 16. Полярное уравнение прямой
§ 17. Окружность
Где b =; очевидно, a  b
Фокусы гиперболы обозначают буквами
Расстояние от фокуса до директрисы буквой
§ 21. Полярное уравнение эллипса, гиперболы и параболы
§ 22. Диаметры линий второго порядка
§ 23. Центр линии второго порядка
§ 24. Приведение к простейшему виду уравнения центральной линии второго порядка
§ 25. Приведение к простейшему виду параболического уравнения
§ 26. Уравнения некоторых кривых, встречающихся в математике и её приложениях 701
§ 27. Декартовы прямоугольные координаты в пространстве
§ 28. Расстояние между двумя точками. Деление отрезка в данном отношении
§ 29. Понятие вектора. Проекции вектора
§ 30. Линейные операции над векторами Суммой а + b двух векторов а
А, b обозначается символом аb
§ 32. Векторное произведение векторов
§ 33. Смешанное произведение трёх векторов
§ 34. Двойное векторное произведение Пусть вектор а умножается векторно на вектор b
Задача о пересечении трёх поверхностей
§ 37. Уравнение цилиндрической поверхности с образующими, параллельными одной из координатных осей
§ 38. Общее уравнение плоскости. Уравнение плоскости, проходящей через данную точку и имеющей данный нормальный вектор
§ 39. Неполные уравнения плоскостей. Уравнение плоскости «в отрезках»
40. Нормальное уравнение плоскости. Расстояние от точки до плоскости
§ 41. Уравнения прямой
Если известна одна точка
§ 43. Смешанные задачи, относящиеся к уравнению плоскости и уравнениям прямой 1038
§ 44. Сфера
Решение*). Пусть м ( r
§ 46. Поверхности второго порядка
Ответы (Глава 1) См черт. 54. 2
) 146. f ( x, у) =2ах-а 147. 1) f ( x; у) = 2ах; 2) f
210. Точки Черт. 76. Черт. 77. M 1
Ответы (Глава 4)
665. Линии 1, 2, 5 и 8 имеют единственный центр; 3, 7 — не имеют центра; 4, 6 — имеют бесконечно много центров. 666
) 720. 1) (4; 3; 0), (-3; 2; 0), точка с лежит на плоскости о X
Ответы (Глава 7) 748
885. Точки m 1, m 2, m 4, лежат на поверхности, точки М
Ответы (Глава 9) 913.. 914. 915. 916
§ Определители второго порядка и система двух уравнений первой степени с двумя неизвестными
§ Однородная система двух уравнений первой степени с тремя неизвестными
§ Определители третьего порядка
§ Свойства определителей
Решение и исследование системы трёх уравнений первой степени с тремя неизвестными Рассмотрим систему уравнений (1) с неизвестными х, у, z (коэффициенты a t, b
Предисловие ко второму изданию
Предисловие к первому изданию

скачать doc

§ 16. Полярное уравнение прямой
Прямая, проведённая через полюс перпендикулярно к данной прямой, называется её нормалью. Обозначим буквой P точку, в которой нормаль пересекает прямую; установим на нормали положительное направление от точки О к точке Р. Угольна который нужно повернуть полярную ось до наложения её на отрезок ОР, будем называть полярным углом нормали.

380. Вывести полярное урав­нение прямой, зная её расстояние от полюса р и полярный угол нормали .

Решение. 1—й способ. На данной прямой s (черт. 11) возьмём произвольную точку М с полярными координатами  и . Точку пересече­ния прямой s с её нормалью обозна­чим буквой Р. Из прямоугольного треугольника QPM находим:

(1)

Мы получили уравнение с двумя переменными  и , которому удовлетворяет координаты всякой точки, М, лежащей на прямой s1 и не удовлетворяют координаты никакой точки, не лежащей на этой прямой. Следовательно, уравнение (1) является уравнением прямой 8. Таким образом, задача решена.

2—й способ. Будем рассматривать декартову прямоугольную систему координат, положительная полуось абсцисс которой совпадает с полярной осью заданной полярной системы. В этой декартовой системе имеем нор­мальное уравнение прямой 5:

x cos  + у sin  р = 0. (2)
Воспользуемся формулами преобразования полярных координат в де­картовы:

х = cos , у = sin . (3)

Подставляя в уравнение (2) вместо х и у выражения (3), получим:

 (cos  cos  + sin  sin )=

или



381. Вывести полярное уравнение прямой, если даны:

1) угол  наклона прямой к полярной оси и длина перпендику­ляра , опущенного из полюса на эту прямую. Написать уравнение этой прямой в случае

,

2) отрезок а1 который отсекает прямая на полярной оси, считая от полюса, и полярный угол а нормали этой прямой. Написать урав­нение этой прямой в случае

а = 2,  = ;

3) угол  наклона прямой к полярной оси и отрезок а, который отсекает прямая на полярной оси, считая от полюса. Написать урав­нение этой прямой в случае

, a=6.

382. Вывести полярное уравнение прямой, проходящей через точку M1 (1; 1,) и наклонённой к полярной оси под углом .

383. Вывести полярное уравнение прямой, проходящей через точку M 1 (1; 1,), полярный угол нормали которой равен .

384. Составить уравнение прямой, проходящей через точки m1 (1; 1,), и M 2 (2; 2).