NetNado
  Найти на сайте:

Учащимся

Учителям



1. /Клетеник - Сборник задач по аналитической геометрии/kletenik_01.doc
2. /Клетеник - Сборник задач по аналитической геометрии/kletenik_02.doc
3. /Клетеник - Сборник задач по аналитической геометрии/kletenik_03.doc
4. /Клетеник - Сборник задач по аналитической геометрии/kletenik_04.doc
5. /Клетеник - Сборник задач по аналитической геометрии/kletenik_05.doc
6. /Клетеник - Сборник задач по аналитической геометрии/kletenik_06.doc
7. /Клетеник - Сборник задач по аналитической геометрии/kletenik_07.doc
8. /Клетеник - Сборник задач по аналитической геометрии/kletenik_08.doc
9. /Клетеник - Сборник задач по аналитической геометрии/kletenik_09.doc
10. /Клетеник - Сборник задач по аналитической геометрии/kletenik_10.doc
11. /Клетеник - Сборник задач по аналитической геометрии/kletenik_11.doc
12. /Клетеник - Сборник задач по аналитической геометрии/kletenik_12.doc
13. /Клетеник - Сборник задач по аналитической геометрии/kletenik_13.doc
14. /Клетеник - Сборник задач по аналитической геометрии/kletenik_14.doc
15. /Клетеник - Сборник задач по аналитической геометрии/kletenik_15.doc
16. /Клетеник - Сборник задач по аналитической геометрии/kletenik_16.doc
17. /Клетеник - Сборник задач по аналитической геометрии/kletenik_17.doc
18. /Клетеник - Сборник задач по аналитической геометрии/kletenik_18.doc
19. /Клетеник - Сборник задач по аналитической геометрии/kletenik_19.doc
20. /Клетеник - Сборник задач по аналитической геометрии/kletenik_20.doc
21. /Клетеник - Сборник задач по аналитической геометрии/kletenik_21.doc
22. /Клетеник - Сборник задач по аналитической геометрии/kletenik_22.doc
23. /Клетеник - Сборник задач по аналитической геометрии/kletenik_23.doc
24. /Клетеник - Сборник задач по аналитической геометрии/kletenik_24.doc
25. /Клетеник - Сборник задач по аналитической геометрии/kletenik_25.doc
26. /Клетеник - Сборник задач по аналитической геометрии/kletenik_26.doc
27. /Клетеник - Сборник задач по аналитической геометрии/kletenik_27.doc
28. /Клетеник - Сборник задач по аналитической геометрии/kletenik_28.doc
29. /Клетеник - Сборник задач по аналитической геометрии/kletenik_29.doc
30. /Клетеник - Сборник задач по аналитической геометрии/kletenik_30.doc
31. /Клетеник - Сборник задач по аналитической геометрии/kletenik_31.doc
32. /Клетеник - Сборник задач по аналитической геометрии/kletenik_32.doc
33. /Клетеник - Сборник задач по аналитической геометрии/kletenik_33.doc
34. /Клетеник - Сборник задач по аналитической геометрии/kletenik_34.doc
35. /Клетеник - Сборник задач по аналитической геометрии/kletenik_35.doc
36. /Клетеник - Сборник задач по аналитической геометрии/kletenik_36.doc
37. /Клетеник - Сборник задач по аналитической геометрии/kletenik_37.doc
38. /Клетеник - Сборник задач по аналитической геометрии/kletenik_38.doc
39. /Клетеник - Сборник задач по аналитической геометрии/kletenik_39.doc
40. /Клетеник - Сборник задач по аналитической геометрии/kletenik_40.doc
41. /Клетеник - Сборник задач по аналитической геометрии/kletenik_41.doc
42. /Клетеник - Сборник задач по аналитической геометрии/kletenik_42.doc
43. /Клетеник - Сборник задач по аналитической геометрии/kletenik_43.doc
44. /Клетеник - Сборник задач по аналитической геометрии/kletenik_44.doc
45. /Клетеник - Сборник задач по аналитической геометрии/kletenik_45.doc
46. /Клетеник - Сборник задач по аналитической геометрии/kletenik_46.doc
47. /Клетеник - Сборник задач по аналитической геометрии/kletenik_o1.doc
48. /Клетеник - Сборник задач по аналитической геометрии/kletenik_o2.doc
49. /Клетеник - Сборник задач по аналитической геометрии/kletenik_o3.doc
50. /Клетеник - Сборник задач по аналитической геометрии/kletenik_o4.doc
51. /Клетеник - Сборник задач по аналитической геометрии/kletenik_o5.doc
52. /Клетеник - Сборник задач по аналитической геометрии/kletenik_o6.doc
53. /Клетеник - Сборник задач по аналитической геометрии/kletenik_o7.doc
54. /Клетеник - Сборник задач по аналитической геометрии/kletenik_o8.doc
55. /Клетеник - Сборник задач по аналитической геометрии/kletenik_o9.doc
56. /Клетеник - Сборник задач по аналитической геометрии/kletenik_op.doc
57. /Клетеник - Сборник задач по аналитической геометрии/kletenik_p1.doc
58. /Клетеник - Сборник задач по аналитической геометрии/kletenik_p2.doc
59. /Клетеник - Сборник задач по аналитической геометрии/kletenik_p3.doc
60. /Клетеник - Сборник задач по аналитической геометрии/kletenik_p4.doc
61. /Клетеник - Сборник задач по аналитической геометрии/kletenik_p5.doc
62. /Клетеник - Сборник задач по аналитической геометрии/kletenik_p6.doc
63. /Клетеник - Сборник задач по аналитической геометрии/kletenik_pr1.doc
64. /Клетеник - Сборник задач по аналитической геометрии/kletenik_pr2.doc
§ Ось и отрезки оси. Координаты на прямой
Координат определяется заданием линейной единицы для измерения длин и двух взаимно перпендикулярных осей, занумерованных в каком-нибудь порядке
§ Полярные координаты
§ Направленный отрезок. Проекция отрезка на произвольную ось. Проекции отрезка на оси координат. Длина и полярный угол отрезка. Расстояние между двумя точками
§ Деление отрезка в данном отношении
§ Площадь треугольника
§ Преобразование координат
§ Функция двух переменных
§ Понятие уравнения линии. Задание линии при помощи уравнения
§ 12. Общее уравнение прямой. Уравнение прямой с угловым коэффициентом. Угол между двумя прямыми. Условие параллельности и перпендикулярности двух прямых
Исследование уравнений двух и трёх прямых. Уравнение прямой «в отрезках»
Задача определения расстояния от точки до прямой
§ 15. Уравнение пучка прямых
§ 16. Полярное уравнение прямой
§ 17. Окружность
Где b =; очевидно, a  b
Фокусы гиперболы обозначают буквами
Расстояние от фокуса до директрисы буквой
§ 21. Полярное уравнение эллипса, гиперболы и параболы
§ 22. Диаметры линий второго порядка
§ 23. Центр линии второго порядка
§ 24. Приведение к простейшему виду уравнения центральной линии второго порядка
§ 25. Приведение к простейшему виду параболического уравнения
§ 26. Уравнения некоторых кривых, встречающихся в математике и её приложениях 701
§ 27. Декартовы прямоугольные координаты в пространстве
§ 28. Расстояние между двумя точками. Деление отрезка в данном отношении
§ 29. Понятие вектора. Проекции вектора
§ 30. Линейные операции над векторами Суммой а + b двух векторов а
А, b обозначается символом аb
§ 32. Векторное произведение векторов
§ 33. Смешанное произведение трёх векторов
§ 34. Двойное векторное произведение Пусть вектор а умножается векторно на вектор b
Задача о пересечении трёх поверхностей
§ 37. Уравнение цилиндрической поверхности с образующими, параллельными одной из координатных осей
§ 38. Общее уравнение плоскости. Уравнение плоскости, проходящей через данную точку и имеющей данный нормальный вектор
§ 39. Неполные уравнения плоскостей. Уравнение плоскости «в отрезках»
40. Нормальное уравнение плоскости. Расстояние от точки до плоскости
§ 41. Уравнения прямой
Если известна одна точка
§ 43. Смешанные задачи, относящиеся к уравнению плоскости и уравнениям прямой 1038
§ 44. Сфера
Решение*). Пусть м ( r
§ 46. Поверхности второго порядка
Ответы (Глава 1) См черт. 54. 2
) 146. f ( x, у) =2ах-а 147. 1) f ( x; у) = 2ах; 2) f
210. Точки Черт. 76. Черт. 77. M 1
Ответы (Глава 4)
665. Линии 1, 2, 5 и 8 имеют единственный центр; 3, 7 — не имеют центра; 4, 6 — имеют бесконечно много центров. 666
) 720. 1) (4; 3; 0), (-3; 2; 0), точка с лежит на плоскости о X
Ответы (Глава 7) 748
885. Точки m 1, m 2, m 4, лежат на поверхности, точки М
Ответы (Глава 9) 913.. 914. 915. 916
§ Определители второго порядка и система двух уравнений первой степени с двумя неизвестными
§ Однородная система двух уравнений первой степени с тремя неизвестными
§ Определители третьего порядка
§ Свойства определителей
Решение и исследование системы трёх уравнений первой степени с тремя неизвестными Рассмотрим систему уравнений (1) с неизвестными х, у, z (коэффициенты a t, b
Предисловие ко второму изданию
Предисловие к первому изданию

скачать doc

§ 28. Расстояние между двумя точками. Деление отрезка

в данном отношении
Расстояние d между двумя точками M1(x1; у1 ; z1) и M2(x2; y2; z2) в про­странстве определяется формулой



Координаты х, у, z точки М, которая делит отрезок , ограниченный точками M11 , y1 , z1) и M2 (x2 ; y2 ; z2 ), в отношении , определяются по формулам:

, ,

В частности, при  = 1 имеем координаты середины данного отрезка:

, ,

726. Даны точки: A (1; —2; — 3), В (2; —3; 0), С (3; 1; —9), D (— 1; 1; — 12). Вычислить расстояние между: 1) А и С; 2) B и D; 3) С и D.

727. Вычислить расстояния от начала координат О до точек: A (4; —2; —4), B (— 4; 12; 6), С (12; —4; 3), D (12; 16; — 15).

728. Доказать, что треугольник с вершинами А (3; — 1; 2), B (0; —4; 2) и С (—3; 2; 1) равнобедренный.

729. Доказать, что треугольник с вершинами А1 (3; — 1; 6), А2 (—1; 7; —2) и А3 (1; —3; 2) прямоугольный.

730. Определить, есть ли тупой угол среди внутренних углов треугольника M1 (4; —1; 4), М2 (0; 7; —4), M3 (3; 1; —2).

731. Доказать, что внутренние углы треугольника М (3; —2; 5), N (— 2; 1; —3), P (5; 1; —1) острые.

732. На оси абсцисс найти точку, расстояние которой от точки А (— 3; 4; 8) равно 12.

733. На оси ординат найти точку, равноудалённую от точек A (1; —3; 7) и В (5; 7; —5).

734. Найти центр С и радиус R шаровой поверхности, которая проходит через точку Р (4; —1; —1) и касается всех трёх коор­динатных плоскостей.

735. Даны вершины треугольника: М1 (3; 2; —5), М2 (1; —4; 3) и M3 (— 3; 0; 1). Найти середины его сторон.

736. Даны вершины треугольника A (2; —1; 4), В (3; 2; —6), С (— 5; 0; 2). Вычислить длину его медианы, проведённой из вер­шины А.

737. Центр тяжести однородного стержня находится в точке С (1; —1; 5), один из его концов есть точка А (—2; —1; 7). Определить координаты другого конца стержня.

738. Даны две вершины А (2; —3; —5), В (—I; 3; 2) парал­лелограмма АВСО и точка пересечения его диагоналей Е (4; — 1; 7). Определить две другие вершины этого параллелограмма.

739. Даны три вершины A (3; —4; 7), В (— 5; 3; — 2) и С (1; 2; —3) параллелограмма АВСО. Найти его четвёртую вер­шину D, противоположную В.

740. Даны три вершины A (3; —1; 2), B (1; 2; —4) и С (—1; 1; 2) параллелограмма АВСD. Найти его четвёртую вер­шину D.

741. Отрезок прямой, ограниченный точками A (—1; 8; 3) и В (9; — 7; — 2), разделён точками С, О, Е, F на пять равных частей. Найти координаты этих точек.

742. Определить координаты концов отрезка, который точками С (2; 0; 2) и D (5; — 2; 0) разделён на три равные части.

743. Даны вершины треугольника А (1; 2; — 1), В (2; — 1; 3) и С (— 4; 7; 5). Вычислить длину биссектрисы его внутреннего угла при вершине В.

744. Даны вершины треугольника А (1; —1; —3), В (2; 1; —2) и С (— 5; 2; — 6). Вычислить длину биссектрисы его внешнего угла при вершине А.

745. В вершинах тетраэдра А (x1 ; у1 ; z1), В (х2; у2; z2), С (х3; у3; z3), D (х4; у4; z4) сосредоточены равные массы. Найти координаты центра тяжести системы этих масс.

746. В вершинах тетраэдра A1(x1 ; у1 ; z1), A2(х2; у2; z2), А3(х3; у3; z3), А4(х4; у4; z4) сосредоточены массы ml, m2, m3, и т4. Найти координаты центра тяжести системы этих масс.

747. Прямая проходит через две точки М1(—1; 6; 6) и М2(3; — 6; — 2). Найти точки ее пересечения с координатными плоскостями